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Abstract

The small-scale structure of the flow produced by vortex methods is discussed, and contrasted
with the small-scale structure produced by grid methods. Particular attention is paid to the
proliferation of vortex hairpins in three dimensions; its origin is analyzed, a statistical description
is given, and methods for harmlessly deleting unneeded hairpins are suggested. These methods
involve renormalization-group ideas and an expansion in powers of a vortex fugacity. In both
theory and applications, magnet variables play a major role.

1 Introduction

It is well known that the small-scale structure of the flows produced by vortex methods can differ
substantially from the small-scale structure produced by other methods, even when large-scale
features of the flow are very similar. Here are some examples: Boundary layers produced by vortex
methods tend to be more oscillatory than their grid counterparts [15]; in some circumstances, a
vortex patch described by contour dynamics filaments in a complex way [26], while a finite-difference
solution of the same problem is hard put to see any of the details of the filamentation even with
heroic mesh refinement [47]. Most troublesome, three-dimensional vortex filament or segment
methods produce a proliferation of small-scale folds or “hairpins”, which can make calculations
expensive and inaccurate [12].

It is a small consolation that the microstructure produced by vortex methods is qualitatively
correct, and indeed does lead one to reconsider the mathematical properties of the zero-viscosity
limit of the Navier-Stokes equations and the basic assumptions of turbulence theory. Real flows
do tend to “curdle” and produce intense vortex patches in two dimensions [45] and intense con-
centrations in three [13]- this is indeed the origin of intermittency; a simple description in terms
of vortices is attractive and also possibly misleading. One should make a sharp distinction be-
tween modeling with vortices, in which one tries to get qualitative understanding with the help
of a moderate number of vortices, and vortex methods as numerical methods, which stand or fall
on their error bounds. Modeling and approximation should not be confused. They have separate
roles; if they are combined this must be done knowingly and carefully. For example, in two-space
dimensions, vortex cores derived from physical analogies [10] deliver less accuracy than vortex cores
obtained by approximation theory [5, 29]. Recent high-accuracy finite-difference solutions of cav-
ity problems [27] exhibit structures that are a vortex fan’s delight, and can be readily modeled
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qualitatively by a small number of vortices and vortex dipoles; these results are also expensive to
reproduce accurately with a vortex method. The elaborate microstructure of vortex methods can
be a boon to modelling and a heavy burden for approximation.

The advantages of vortex methods are low numerical viscosity, natural adaptivity, ease in inter-
pretation and ease in imposing certain boundary conditions. The disadvantages are often related
to the complex microstructure; whether the price is worth paying depends on the problem, in par-
ticular on the Reynolds number and on the accuracy desired. The solution of many problems is
made easier if a good way to remove unwanted microstructure can be found.

2 An example of microstructure control

The complexity of small-scale vortex structure in three-dimensional vortex methods has been ob-
served by many [49]. Numerical vortex filaments can fold and stretch so that the task of following
them becomes intractable. Smoothing of various kinds can delay this phenomenon, but then the
effect of smoothing on accuracy must be weighed. Similar phenomena can occur at the boundaries
of constant- vorticity patches in two dimensions, for which a control strategy has already been
offered [25].

Folding in three dimensions starts for an obvious reason: one replaces a continuum distribution
of vorticity by a bunch of filaments (for the sake of brevity, the possibility of using segments, arrows,
loops will not be mentioned explicitly). Vortex filaments are unstable to perturbations whose
wavelength is comparable to the vortex core [13, 53]. The evolution of the unstable modes generates
spatial chaos, familiar from physical vortex systems such as fractal superfluid vortices [2, 23], vortex
glass phases in superconductors [32], and vortex lines in turbulence [13]. Indeed, the effort to
understand numerical vortex folding has been useful in the analysis of these physical problems.
However, numerical vortex folding is merely analogous, not identical, to physical vortex folding.
The proliferation of numerical vortex elements is due in large part to numerical effects: Numerical
instability, loss of accuracy and loss of resolution. Physical analogies are helpful heuristically, but
must be used with great caution. In particular, as the numerical filaments lengthen and their
curvature grows (as it must, if only because the filaments are typically confined to a finite volume),
more integration points and shorter time steps should be used. If this is not done (and usually
it cannot be done), the process of stretching and folding accelerates. Overproduction of vorticity
marks underresolution (under other circumstances as well, see [6]). Soon the complexity of the flow
and the attendant errors become overwhelming.

We shall try to figure out analytically the asymptotic behavior that the numerical vortex fila-
ments would have exhibited if only they had been calculated with no numerical error, and impose
that behavior on the computed vortex system through renormalization. The original sin of replacing
a continuum by a bunch of discrete objects is not erased; discretization error, stability and moment
errors [5] remain but are, one hopes, dramatically reduced. One would have liked to impose on the
filaments the asymptotic behavior of solutions of the Navier-Stokes or Euler equations, but it is not
yet known how to do that. The assumption here is that the approximating vortex system would
produce a good approximation if only its behavior in time were followed accurately.

To find the asymptotic behavior of the numerical vortex system we appeal to the equilibrium
statistical mechanics of vortex systems. A general discussion of why equilibrium statistical me-
chanics is appropriate can be found elsewhere [13, 17, 46]. Once the relevant equilibria are found,
a renormalization transformation will be carried out to reduce the correct asymptotic states to
simpler, computable states without undue loss of information. The analysis is based on an ex-
pansion in a certain parameter, the “fugacity”. The lowest order theory generates a procedure
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that resembles in some ways the “surgery” introduced by Dritschel [25] in contour dynamics to
reduce the complexity of stretching contours in the plane. There is a difference in the details of
the implementation between the two-dimensional and the three-dimensional cases, partly due to
the fact that two-dimensional contours are smooth while vortex lines in three dimensions are not.
More important, the theory that follows here is applicable so far only to three-dimensional flows.
The key to the analysis is the observation that the stable equilibria of classical vortex systems lie
on a phase transition line.

The paper is structured as follows: In Sections 3 and 4 we describe the stable equilibria of vortex
filaments in three dimensions, with some comments on irreversibility. In Section 4 we describe the
uses of this theory, and in particular a renormalization procedure that simplifies calculations without
sacrificing the asymptotic properties of vortex equilibria. In Section 5 we explain new techniques
for satisfying boundary conditions in three-dimensional flows, needed for the application of our
procedures; they are discussed in detail elsewhere in this conference [52]. Some speculations and
open questions are presented in the concluding section.

3 Statistics of a single vortex filament

We begin by considering the equilibrium statistical mechanics of a single vortex filament. This is
already a non-trivial system because a single filament has a large number of degrees of freedom. The
construction in this section is amply described elsewhere, see e.g. [13, 15]. Consider a single long
vortex filament, with some small, finite, constant cross-section. Note that already here we depart
from real fluid mechanics and are considering the equilibrium statistics of a computational element;
a real vortex in a classical fluid has a non-constant cross-section (indeed, probably a log-normal
distribution of cross-sections [13]). It is immaterial for the analysis here whether the filament is open
(a topological cylinder) or closed (a topological doughnut). The energy of a compactly-supported
vorticity field & = £(x) is given by the integral

Bk [ [ 0800 0

where |x| is the length of the vector x. To specialize this integral to the case of a filament, suppose
the filament center-line can be approximately mapped on a connected set of N bonds of a cubic
lattice; then FE is approximated by

EN:ZZti'thrNM, (2)

e |i — j

where t; is a vector centered at the center of the lattice bond occupied by the i-th piece of the
filament, parallel to that bond, pointing in the same direction as £ in the bond, with |t;| = circu-
lation of the vortex multiplied by the bond length and divided by v/8, |i — j| is the straight-line
distance between segments ¢ and j, and p is that portion of the integral in (2) which corresponds
to x,x’ in the same bond. The parameter p will play an important role in the next section; it
can be thought of as the energy per unit length of the vortex, if long range vortex interactions
are neglected, and it is the analog of the “chemical potential” of statistical physics. We shall see
that p controls the density of vortex filaments. The device of attaching the vortex to a lattice
is convenient, and produces very little loss in generality. The filament has many configurations.
Assign to each configuration the “Gibbs” probability Z ! exp(—BExy), where Z is the appropriate
normalization factor, Ey is the energy of the configuration, § = 1/T, and T is the “temperature”.
This temperature can be viewed as a mere parameter; its connection with what one usually calls
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temperature is discussed at length elsewhere [13]. The assumed probability distribution expresses
thermal equilibrium. As in two space dimensions, 7' can be positive or negative; T' < 0 is “beyond
infinity” rather than below 0; negative temperatures occur whenever the maxima of the entropy
and of the energy fail to coincide. If the notion of negative temperatures is not comfortable, view
it as a temporary aberration; by the time we come to a many-filament system the range T" < 0 will
become less important. If this “Gibbsian” probability distribution is assumed, then in the limit
N — o0, the vortex filament is in one of three states: For # > 0 it is balled up into a crumpled ball,
for # < 0 it is a straight line. The heuristics of this situation are simple: 3 > 0 favors (=assigns
high probability to) low energy states, and low energy for a vortex is obtained by folding it and
allowing the velocity fields induced by its several pieces to cancel; the converse holds for § < 0. It
is the boundary between these cases that is most important: When g = 0 all the exponents in the
Gibbs distribution are zero, and all configurations are equally likely. In addition, configurations
with two pieces of the vortex occupying the same lattice bonds are forbidden, by conservation of
volume. A collection of configurations of a lattice vortex, all equally likely, with no overlaps, is
known as a “polymer”, because it is often used as a model for a polymer in a solution. A lot is
known about this kind of polymers, in particular from long experience with numerical computation
[28]. A typical polymer is non-smooth, and has fractal dimension D = 1.70.... The quantity 1/D
is known as the “Flory exponent”. If the vorticity has support on a “polymer”, its energy spectrum
has a power law [13, 57].

This picture does not change if we replace a single filament by an infinite collection of filaments,
as long as they are far enough from each other so as not to feel each other’s presence. The limit
N — oo for each of these filaments can be reached by reducing the length of the bonds in the
lattice.

We now claim that it is the “polymeric” 8 = 0 state that is important in fluid mechanics
because it attracts other equilibrium states; i.e., even if one starts with § # 0, one ends up with
B = 0, as the result of vortex stretching. Indeed, consider a smooth physical vortex with some
finite cross-section. It can be modeled as a finite collection of segments, at a negative 3 (or else the
filament is too crumpled to model something smooth). If the vortex is imbedded in a random flow
it will presumably stretch [13, 21]; if its energy is conserved one can see that |3| will decrease until
B = 0 is reached, assuming the evolution can be modelled as a succession of equilibrium states.
The heuristics here too are straightforward: Vortex stretching creates new bonds without adding
energy; the energy per bond decreases, reducing the temperature. Energy conservation forbids
the crossing of the boundary § = 0 (see more below), which is therefore attracting. We thus
have a simple near-equilibrium cartoon of the effect of vortex stretching and of the reason for the
appearance of a Kolmogorov spectrum. In two space dimensions, by contrast, there is no stretching,
the temperature of a vortex system is invariant (assuming adiabatic walls), and there is no universal
spectrum. The conclusion is that a very sparse collection of thin vortex filaments will end up having
an infinite temperature, with each vortex filament having a fractal centerline. The constant u plays
a secondary role; further analysis shows that it plays a role in creating intermittency, which does
not concern us here.

4 A collection of vortex filaments

We now consider many filaments. The significant parameters in the problem are 5 = 1/T, as before,
and p, the “chemical potential”, defined in Eq. 2. The equilibria of many-vortex systems have been
studied numerically (see [1, 14, 35]), and they exhibit a phase transition line that is no longer on
the p axis (8 = 0) in the (8, ) plane. As before, smooth vortex filaments live on the small 3 side
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of this line (which includes the half plane § < 0, since negative temperatures are “hotter” than
positive temperatures), and vortex stretching draws them to the transition line. Note that the
numerical vortex lines have a constant cross-section, like some models of superfluid vortex lines but
unlike physical vortices. This emphasizes again that a physical vortex line must be approximated
by a cloud of numerical vortex lines.

To understand the situation analytically, we proceed via a Kosterlitz-Thouless (KT) “dielectric”
analysis [36, 37], which is a two-term expansion in powers of the fugacity y = e¢~%*, and applies
to sparse (but no longer one-filament) systems. The analysis of the previous section will turn out
to be the y — 0 limit of this theory. The “dielectric” formalism is not uniquely defined [19], and
will will pick its easiest version [18]. The formalism has the great advantage of leading naturally
to irreversible extensions of the equilibrium theory.

First, following [43, 54] we simplify the vorticity field and represent it as a sparse collection of
planar, circular vortex loops. Recent work, in particular by Buttke [7, 8], shows that any vorticity
field can be approximated by a union of circular loops (also known as “magnets”, or “elements of
impulse” or “velicity”); indeed, every closed vortex filament can be decomposed into small planar
loops: Simply span the filament by a surface, and break the surface into small pieces; assign to each
piece a vortex loop with the same circulation as the original closed vortex filament, and spanning
an area equal to the area of the small piece. This representation is not unique, as is obvious from
the non-uniqueness of the spanning surface, and this creates problems when entropy is calculated;
furthermore, the surface elements on the surface must coalesce into a coherent surface, and are not
free to rotate as will be assumed in the argument that follows now. The loop representation thus
constitutes a substantative simplification [14], and we shall not dwell on the errors that it produces.
One can attach to each small planar loop (or “magnet”, so called by analogy with magnetostatics)
an arrow perpendicular to its plane and oriented by the direction of the vorticity in the loop; such
an oriented magnet will be denoted in this section by m.

Suppose for a moment that the temperature T of the system of vortex loops is small, and accept
the idea that the temperature defined above as a parameter in a Gibbs distribution does indeed
correspond to what is usually thought of as temperature. If T is positive and very small, there
will be very few loops in the system and the impulse they carry will be small. The impulse of
a vortex loop is the integral %K‘, floopx X ds , where k is the circulation in the loop and ds is an
element of arc length; if the loop is planar, the impulse reduces to kA, where A is the area spanned
by the loop [13, 33]. As the temperature increases, there will be more loops and larger loops. As
long as the loops are small and disconnected, the loop representation presents no problems; the
loops are independent and their spanning surfaces can be easily chosen by a common convention
(for example, as the minimal surfaces attached to each loop; for a detailed analysis, see [23]). The
growth in the number of loops and in the size of the loops are related: If one takes a large loop and
places inside it a smaller loop with opposite orientation, the energy of the combined configuration
is reduced and its appearance is more likely (this is ”polarization”); thus a cloud of small loops
allows large loops to form. Eventually, it becomes possible for an infinite loop to form. The result
is a percolation threshold and a phase transition in the vortex system [1, 13]. In the theory of
superfluids, this phase transition corresponds to the transition from a superfluid to a normal fluid;
we shall argue below that this is also the attracting equilibrium for a classical fluid (i.e., for the set
of "excitations”, or modes of motion, that make up turbulence is the usual type of fluid).

We are going to look for the transition through the use of a “dielectric model”; the analysis
follows on the whole the first part of the analysis given by Williams [54] as modified in [18]. Consider
a single vortex loop; assume that all the other loops create a polarizable background that modifies
the energy of the loop, and we ask for the range of the parameters 3, for which this picture is
self-consistent. The boundary of that region will be the phase transition line.
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Suppose a velocity u is imposed on the cloud of vortex loops. The loops will orient themselves
so as to oppose that velocity. The reduction in energy due to the presence of a magnet m is
%m -u. The average polarizability of the loop, i.e., the average value of m-u divided by u = |u|
is 1—12ﬁm2, where m = |m|. This calculation can be found e.g in [18]: One averages over all solid
angles, weighing each by the appropriate Gibbs factor which favors lower energies. We already
know that m = knr?, where r is the radius of the loop; thus polarizability is a function of r.
Next one has to find the density of loops of radius r. We view the number of loops as variable,
and thus it is the grand-canonical ensemble that is relevant. In order to use this ensemble in a
classical fluid mechanical context, where loops cannot be created by thermal fluctuations because
of the conservation of circulation and can only be created by vortex stretching and reconnection,
one has to invoke a generalized ergodic principle [40] to the effect that thermal equilibrium will not
be denied regardless of the precise mechanics involved.

The grand-canonical partition function is an expansion in powers of the fugacity y = exp(—f
Poop), Where pioop is the energy needed to create a single loop of radius 7. For an isolated circular
loop this energy equals prlogr, where u, the energy per unit length of the vortex loop, is closely
related to the p of Eq. 2 above. The coeflicient of y is the partition function for a one-loop system,
the sum of possible states of that system per unit volume times their Gibbsian weights [31]. If the
fugacity is small enough one can be content with this single term which is then the density of the
the loops of radius r. (Note that the zero-order term in y does not contribute to the polarization).

To enumerate all states one needs an estimate of the smallest length scale in the problem. For
a collection of thin circular filaments it is natural to take the small diameter § of the filaments as
this smallest length scale. In a unit cube there are 3 possible loop centers. All orientations of the
loops are possible, albeit with different probabilities; There are 4nr2dré—3 distinct orientations of
a loop with radius between r and r + dr. Each of these has to be multiplied by the corresponding
Gibbs factor exp(—FE/e), where E is the energy of interaction between the loop under discussion
and all the others, and e = e(r) is the dielectric “constant”, which, in the absence of a scale
separation between large and small loops, may well be a function of r. In fact, one must figure out
how a loop of radius r is formed and write a history-dependent expression for the potential in the
Gibbs factor, see [19], but we shall not need this degree of refinement: In a low-fugacity system,
E is negligible. The dielectric constant is the sum of all these contributions as r ranges from § to
infinity. It is customary to introduce the function K = K(r) by e(r) = 5/K(r). Note that the
unknown e or K appears in the exponential. We shall assume for simplicity that K is in fact a
constant; the equation for K is nonlinear:

o
Kl=p14+ cl/ 8 exp(—Keorlogr))dr | (3)
1

where the constant ¢; can be evaluated from the preceding discussion, and is proportional to § 6.
(More precisely, ¢; = (4/3)7*k26C; the powers of 7 come about as follows: Two from the formula
for polarizability, one from the enumeration of states due the rotations of the loops, and one from the
4 in the relation between loops and the induced velocity [33].) The estimation of the parameter
co involves some elaborate manipulations. The easiest way to find it is as follows: Assume the
energy of a loop can be found as the product of an energy per unit length of the filament (defined
in Eq. 2 with bond length 1) times the length; this requires dropping logr from the definition of
the energy of a loop—a small error (in [18] it is shown that this simplification is entirely legitimate
for fractal loops, but we are not invoking a fractal loop model). Now we need only the energy per
unit length of the numerical vortex. Suppose the vortex is approximated as a sum of blobs. Let
Q@ be the energy of the motion due to a single blob of radius 1; ) may have to be found from a
numerical integration of an integral such as (1) over the support of the blob. In setting up this
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integration, one must carefully account for the assumed direction of the vorticity field in the blob;
Q is an attribute of the numerical method, and remains fixed as long as the same blob function is
used. For the 4th-order Beale-Majda blob [5] @ = 5.17. A simple scaling analysis shows that if the
blob radius is o rather than 1, the corresponding energy is )/o. The circulation x multiplies this
energy by x2. If there are M = 1/h blobs per unit length of the vortex, where h is the inter-blob
distance, then u = Qx?/ho.

Equation 3 can now be rewritten in the form

oo

T=p'=K"'— cl/ 8 exp(—K pr)dr . (4)
d

As was noted by Hald [30], the right-hand side of (5) is a convex function of K with a single
maximum 7Ty at some K. For T" > Ty Eq. 5 cannot be satisfied with K real, and we are outside
the region of validity of the “dielectric” approximation, i.e., we have crossed the phase transition
line. As p varies one obtains different values of 3y = 1/Tj which trace out the phase transition line,
sketched for a particular choice of parameters in Fig. 1. Note that this graph is consistent with the
single-filament model: As y — oo the system becomes more sparse and the phase transition line is
asymptotic to the § = 0 axis, which was the result of the preceding section. Note that K changes
across the phase transition line: We have K > 1 to the left; the integral equation yields a complex
K on the right, but by then the model does not apply as it stands.

The discussion just given has heuristic elements and mathematical difficulties [19]. Its great
advantage is that one can imbed into the “dielectric function” formalism a non-instantaneous
response of the loops to a variable imposed velocity, and as a result obtain a description of non-
equilibrium phenomena “near” the equilibrium configurations we have just calculated [3, 16, 39].
This is an important point, in particular because it reconciles the “equilibrium” model with the
irreversible aspects of turbulence, but it does not otherwise concern us here, see [16]. It is comforting
that the results we have obtained agree reasonably well with numerical data [2, 35]. These results
can also be derived by more sophisticated procedures, in particular by a perturbation expansion
on the cold side of the transition and by hydrodynamic methods on the “hot” side; these more
elaborate constructions will be presented elsewhere.

Our assumption is that if an ensemble of numerical vortex filaments is followed accurately, it
will come to reside on the phase transition line. One expects the vortex centerlines to become
fractal, as in the very sparse system of the previous section, and thus it is not expected that a
straightforward numerical calculation will do a good job of following the collection to its resting
place. However, the information available about the phase transition line can be put to good use
and improve the numerical calculations, as shown in the next section.

5 Renormalization and hairpin removal

The dielectric formalism lends itself to a renormalization group analysis (see [19, 35]), of which we
are now going to produce a simplified version. Different applications of renormalization groups in
fluid mechanics can be found can be found in [4, 41, 44, 56].

Renormalization group (RNG) methods, as they are used in fluid mechanics, are methods
for simplifying many-body systems so that they contain fewer “bodies” (here, vortices, elsewhere
often Fourier amplitudes) and are easier to deal with numerically. RNG methods are also closely
related to large-eddy simulation methods; that relationship rests ultimately on the fact already
mentioned that turbulent systems live on a phase transition line [13]. We shall present a version
of the RNG with the following assumptions: The non-equilibrium aspects of the inertial range
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will be disregarded (and in particular, we shall pursue calculations over times so short that energy
dissipation can be neglected), and we shall adhere to the constant K model used above, where K
is a constant that satisfies a certain nonlinear equation. In a more general treatment, one has to
allow K to vary with scale.

The typical vortex calculation is made in terms of vortex filaments rather than vortex loops
(the difficulties in using loops are analyzed in detail in [23]; one context in which loops are useful
is near walls, see [22, 52| and below). We shall first consider a hypothetical calculation that does
use loops, and then translate the results to the language of filaments.

Suppose you have a collection of vortex loops with inverse temperature 8 and chemical potential
1, with values that correspond to the transition line. On the “cold” side of the line one has a
dielectric constant K = K (3, 1), which has been calculated at the same time as 3, given p and the
other constants: (87! is the maximum of the right-hand side of Eq. 4 reached at the appropriate
value of K = Kj). On the “hot” (high 7' = B! side) the theory above is not defined; complex
values of T are meaningless. To the extent that this theory can be taken seriously, one can think
that it breaks down slowly (for example, as a result of a gradual build-up of large scale vortices,
and that on the transition line K = K|, i.e., one can assume that the K from the left extends to
the boundary. This is not an obvious conclusion, and we expect to examine it carefully in later
work. Notice in particular that in the previous section, as in other folding transitions [13], there
are three distinct states, one on each side of the transition line and one on the line itself.

Assuming that K is known on the transition line, and that one has an equilibrium critical
state, suppose that all loops of radius r < d are simply deleted from the calculation. The total
contribution to the dielectric constant of the loops deleted is

d
e(d) = B/K =1+ 1 /5 S exp(—K p)dr = 1+ C(d) , (5)

and the remaining loops have interactions lowered by 1 + C(d). In an homogeneous medium all
one has to do is reduce the strengths of all the vortices by this factor, 1 + C(d). Hopefully, d
is large enough so that the motion of the remaining loops can be followed accurately, but not so
large that the finite rate of relaxation of equilibrium of the loops of scale d cannot be neglected in
what is only approximately an equilibrium theory. One can easily see that the larger the loop, the
longer is the time it takes to relax to equilibrium; indeed, if it is large enough it will never relax to
equilibrium in the presence of external stirring. We have thus succeeded in imposing the correct
asymptotic properties of the collection of vortex filaments on the numerical calculation, leaving for
direct computation a task that has become more affordable.

A special case that is particularly easy to deal with is the one of a very sparse collection of
vortices. One can go through the formalism above and see that the renormalization parameter
14 C(d) is very close to 1 for a sparse collection. Indeed, for a sparse collection one should be able
to use the one-vortex theory of the preceding section in which the critical line is # = 0. On that line,
all the Gibbs factors are unity, there is no polarization, and small loops can be removed without
penalty, as was indeed done in [12]. The enormous gain in computer effort and the negligible cost
in accuracy are exhibited in that reference.

In the discussion so far we have pretended that the computational elements were circular loops
and that the system was homogenenous. Neither assumption holds in practical computation. First,
one normally computes with vortex filaments of general form rather than with circular loops. One
can use Buttke’s theory [9] to transform the general loops into circular loops, but the resulting
algorithms are very expensive. To apply the renormalization just described in a vortex filament
representation one has to be able to recognize loops of a given scale. Vortex loops of arbitrary
shape can be divided into vortex filaments of smaller size; one can use the local curvature of the
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filaments as an indicator of the scale of the appropriate smaller loops. There is no unique way of
doing that. Experience seems to indicate that it is very difficult to recognize the scale of loops in
calculations based on vortex elements which do not individually have zero divergence (for example,
with vortex “arrows”). The issue is discussed in [12] and, with much more detail, in [20].

Another issue that will be addressed in [20] is the modification of the renormalization for
inhomogeneous systems. To a first approximation, when C(d) is small, the inhomogeneity can be
ignored as was done in [12]. However, this is not a satisfactory general method. If one considers
two patches of vorticity at some distance from each other, with no vorticity in between, the velocity
field due to one patch moves the second patch as a whole; the polarization of loops inside a patch
affects the velocity distribution within the patch but not the velocity of the patch. The issue that
arises here is the issue of galilean invariance in hydrodynamics; for an early seminal discussion see

[38].

6 More on the magnet representation

As was already mentioned above, several authors [8, 42, 48, 50] have noted the possibility of writing
the Euler and Navier-Stokes equations in three space dimensions in terms of “magnetization” (or
“Impulse”, “velicity”); Buttke [8],[9] has constructed a numerical method based on this represen-
tation coupled with a blob mollification; this numerical method gives rise to a Hamiltonian system
at each level of approximation. Cortez [22] has shown how to adapt the high-accuracy blobs of
vortex theory to produce high-order accurate magnet approximations. It is shown in [22, 23] that
the magnet representation in free space is not trouble-free: the amplitude of the computational
elements is proportional to the area of certain “normal” surfaces, and can grow without bound
even when the vorticity remains uniformly bounded. To run successfully, one has to introduce
sophisticated remappings. However, near walls, magnets can be very useful, in particular because
they allow the creation of vorticity at walls in three space dimensions in the form of closed loops,
and thus make hairpin removal/renormalization much easier. The difficulties one can encounter in
creating loops by other means are described in [51].

To develop the magnet representation, start with the observation that the velocity u is the
vector potential for the vorticity: € = curl u. In a simply connected domain the addition of grad ¢q
to u leaves £ invariant (we consider only the three-dimensional case). Given an arbitrary ¢ at
t = 0, one can find equations of motion for m = u+ grad ¢. In the Euler case (R = o), if
m= (my,me,m3), u= (u1,us,us), these equations are

Dmi
Dt

= Gtmi + ujajmi = —mj(?iuj (6)

u=Pm, (7)

where P is the Hodge projection that extracts from m its divergence-free part that is tangent to
the boundaries. (The addition of viscosity adds a term R~'!Am to (6), and requires a careful
consideration of boundary conditions, because P and A do not necessarily commute in the presence
of walls.) If the vorticity € has support in a finite ball B, it is possible to pick ¢ so that at t = 0,
m = 0 outside B, and then m retains a compact support for all £ > 0. This condition is however
not sufficient to fix m uniquely. We shall henceforth assume that m has compact support if € does.

To construct a Lagrangian numerical method, write m = m(x,t) = >, M;(t)¢$s(x — x;), where
¢s is a locally supported blob centered at x;. The equations of motion for this m are easily found:
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from (6) one finds

d(M;)y,
dt

= —(M;);0ku;(xi) (8)
where (M), is the k-th component of M;; in addition,

dx;
dt

—u(x;), u=Pm, (9)

where the projection is to be performed on the function m defined by the magnetization blobs (=
“magnets”). This is easily done: One can check that for all ¢ > 0, the m produced by Eq. (6)
differs from u by a gradient ¢ = ¢(x,t). Write ¢ = X¢;, u; — M;¢5(x — x;) = grad ¢;; hence Ag; =
—div(M¢;) (A = Laplace operator); let 95 = A_1¢5, then ¢; = div(M;9s(x — x;)) = (M;) ks,
(grad ¢;)k = (M;)e0rOkbs, and (w;)r = (M;)rgs — (M;)e0p0ktps. Finally, u(x;) = 3, u;(x;) (the
velocity at a point is the sum of the velocities generated by all the loops).

One can readily verify that the system (8), (9) is Hamiltonian, with Hamiltonian H = % 3y M-
uy. The variables (M;)g, (u;) are conjugate. The vector m has velocity units, and the units of
M are velocity x volume. One can also check that the velocity field u; due to the i-th magnet is
identical at large distances to the velocity field due to a small, circular vortex loop (see e.g. [33]).
Thus the “magnet” representation is a loop representation like the one we used for KT theory.

In vortex methods, the no-slip boundary condition is usually satisfied by creating vorticity. At
each boundary point, the velocity defect can be readily found, and a vortex “arrow” created. Arrow
representations require care under the best of circumstances [55], but are particularly awkward when
one sets out to recognize and remove small loops (= hairpins). It is difficult to string the arrows
into closed loops. The magnet representation neatly side-steps the problem.

The key observation is that force acting on a fluid imparts impulse to the fluid. Impulse is
identical with magnetization. There are many ways of using this observation, corresponding to the
multiple choices of gauge in the definition of m. One possibility is to start by creating vortex sheets
at walls, calculate the impulse associated with them, and replace them at some point by loops of
equal impulse. A complete construction is given in [52]. These loops are then fodder for hairpin
removal.

7 Conclusions and warnings

We have produced a theory that leads to implementable algorithms for simplifying vortex calcula-
tions and taming their microstructure. The idea that much of the microstructure is either unneeded
or misleading is natural; the theory has the added advantage of providing a systematic approxi-
mation procedure which in principle can be used to gauge the reliability of the simplification. The
theory, as presented here, rests in particular on the idea that if one could follow the approximate
vortex representation accurately, one would obtain a good approximation to the Euler equations
even for long times; the truth of this idea is not self-evident, and it must be viewed as only a
plausible guess.

At several places in the analysis various simplifications were made, which must be examined in
greater detail. The KT (Kosterlitz-Thouless) dielectric model is open to various challenges, and its
continuation across a transition line requires a clearer analytical justification.

Eventually, the KT theory must be replaced by a more general and analytically justifiable field
theory of turbulence. Indeed, the KT theory is a a simplified version of a field theory for vortex
pairs. An appropriate field theory will define the appropriate invariant measures that describe
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turbulence, and allow one also to decide whether vortex descriptions provide an adequate tool for
describing turbulent flow. Adequate field descriptions already exist for superfluid vortices [34]; the
differences between superfluid vortices and classical vortices [7] are beginning to be well understood,
and a field-theoretical analysis of vortex interactions and their renormalization is within sight [13].
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Figure 1: Vortex phase transition line according to KT theory.
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