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Abstract

The small�scale structure of the �ow produced by vortex methods is discussed� and contrasted

with the small�scale structure produced by grid methods� Particular attention is paid to the

proliferation of vortex hairpins in three dimensions� its origin is analyzed� a statistical description

is given� and methods for harmlessly deleting unneeded hairpins are suggested� These methods

involve renormalization�group ideas and an expansion in powers of a vortex fugacity� In both

theory and applications� magnet variables play a major role�

� Introduction

It is well known that the small�scale structure of the �ows produced by vortex methods can di�er
substantially from the small�scale structure produced by other methods� even when large�scale
features of the �ow are very similar� Here are some examples� Boundary layers produced by vortex
methods tend to be more oscillatory than their grid counterparts ��	
� in some circumstances� a
vortex patch described by contour dynamics �laments in a complex way �
�
� while a �nite�di�erence
solution of the same problem is hard put to see any of the details of the �lamentation even with
heroic mesh re�nement ���
� Most troublesome� three�dimensional vortex �lament or segment
methods produce a proliferation of small�scale folds or �hairpins�� which can make calculations
expensive and inaccurate ��

�
It is a small consolation that the microstructure produced by vortex methods is qualitatively

correct� and indeed does lead one to reconsider the mathematical properties of the zero�viscosity
limit of the Navier�Stokes equations and the basic assumptions of turbulence theory� Real �ows
do tend to �curdle� and produce intense vortex patches in two dimensions ��	
 and intense con�
centrations in three ���
� this is indeed the origin of intermittency� a simple description in terms
of vortices is attractive and also possibly misleading� One should make a sharp distinction be�
tween modeling with vortices� in which one tries to get qualitative understanding with the help
of a moderate number of vortices� and vortex methods as numerical methods� which stand or fall
on their error bounds� Modeling and approximation should not be confused� They have separate
roles� if they are combined this must be done knowingly and carefully� For example� in two�space
dimensions� vortex cores derived from physical analogies ���
 deliver less accuracy than vortex cores
obtained by approximation theory �	� 
�
� Recent high�accuracy �nite�di�erence solutions of cav�
ity problems �
�
 exhibit structures that are a vortex fan�s delight� and can be readily modeled
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qualitatively by a small number of vortices and vortex dipoles� these results are also expensive to
reproduce accurately with a vortex method� The elaborate microstructure of vortex methods can
be a boon to modelling and a heavy burden for approximation�
The advantages of vortex methods are low numerical viscosity� natural adaptivity� ease in inter�

pretation and ease in imposing certain boundary conditions� The disadvantages are often related
to the complex microstructure� whether the price is worth paying depends on the problem� in par�
ticular on the Reynolds number and on the accuracy desired� The solution of many problems is
made easier if a good way to remove unwanted microstructure can be found�

� An example of microstructure control

The complexity of small�scale vortex structure in three�dimensional vortex methods has been ob�
served by many ���
� Numerical vortex �laments can fold and stretch so that the task of following
them becomes intractable� Smoothing of various kinds can delay this phenomenon� but then the
e�ect of smoothing on accuracy must be weighed� Similar phenomena can occur at the boundaries
of constant� vorticity patches in two dimensions� for which a control strategy has already been
o�ered �
	
�
Folding in three dimensions starts for an obvious reason� one replaces a continuum distribution

of vorticity by a bunch of �laments �for the sake of brevity� the possibility of using segments� arrows�
loops will not be mentioned explicitly�� Vortex �laments are unstable to perturbations whose
wavelength is comparable to the vortex core ���� 	�
� The evolution of the unstable modes generates
spatial chaos� familiar from physical vortex systems such as fractal super�uid vortices �
� 
�
� vortex
glass phases in superconductors ��

� and vortex lines in turbulence ���
� Indeed� the e�ort to
understand numerical vortex folding has been useful in the analysis of these physical problems�
However� numerical vortex folding is merely analogous� not identical� to physical vortex folding�
The proliferation of numerical vortex elements is due in large part to numerical e�ects� Numerical
instability� loss of accuracy and loss of resolution� Physical analogies are helpful heuristically� but
must be used with great caution� In particular� as the numerical �laments lengthen and their
curvature grows �as it must� if only because the �laments are typically con�ned to a �nite volume��
more integration points and shorter time steps should be used� If this is not done �and usually
it cannot be done�� the process of stretching and folding accelerates� Overproduction of vorticity
marks underresolution �under other circumstances as well� see ��
�� Soon the complexity of the �ow
and the attendant errors become overwhelming�
We shall try to �gure out analytically the asymptotic behavior that the numerical vortex �la�

ments would have exhibited if only they had been calculated with no numerical error� and impose
that behavior on the computed vortex system through renormalization� The original sin of replacing
a continuum by a bunch of discrete objects is not erased� discretization error� stability and moment
errors �	
 remain but are� one hopes� dramatically reduced� One would have liked to impose on the
�laments the asymptotic behavior of solutions of the Navier�Stokes or Euler equations� but it is not
yet known how to do that� The assumption here is that the approximating vortex system would
produce a good approximation if only its behavior in time were followed accurately�
To �nd the asymptotic behavior of the numerical vortex system we appeal to the equilibrium

statistical mechanics of vortex systems� A general discussion of why equilibrium statistical me�
chanics is appropriate can be found elsewhere ���� ��� ��
� Once the relevant equilibria are found�
a renormalization transformation will be carried out to reduce the correct asymptotic states to
simpler� computable states without undue loss of information� The analysis is based on an ex�
pansion in a certain parameter� the �fugacity�� The lowest order theory generates a procedure
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that resembles in some ways the �surgery� introduced by Dritschel �
	
 in contour dynamics to
reduce the complexity of stretching contours in the plane� There is a di�erence in the details of
the implementation between the two�dimensional and the three�dimensional cases� partly due to
the fact that two�dimensional contours are smooth while vortex lines in three dimensions are not�
More important� the theory that follows here is applicable so far only to three�dimensional �ows�
The key to the analysis is the observation that the stable equilibria of classical vortex systems lie
on a phase transition line�
The paper is structured as follows� In Sections � and � we describe the stable equilibria of vortex

�laments in three dimensions� with some comments on irreversibility� In Section � we describe the
uses of this theory� and in particular a renormalization procedure that simpli�es calculations without
sacri�cing the asymptotic properties of vortex equilibria� In Section 	 we explain new techniques
for satisfying boundary conditions in three�dimensional �ows� needed for the application of our
procedures� they are discussed in detail elsewhere in this conference �	

� Some speculations and
open questions are presented in the concluding section�

� Statistics of a single vortex �lament

We begin by considering the equilibrium statistical mechanics of a single vortex �lament� This is
already a non�trivial system because a single �lament has a large number of degrees of freedom� The
construction in this section is amply described elsewhere� see e�g� ���� �	
� Consider a single long
vortex �lament� with some small� �nite� constant cross�section� Note that already here we depart
from real �uid mechanics and are considering the equilibrium statistics of a computational element�
a real vortex in a classical �uid has a non�constant cross�section �indeed� probably a log�normal
distribution of cross�sections ���
�� It is immaterial for the analysis here whether the �lament is open
�a topological cylinder� or closed �a topological doughnut�� The energy of a compactly�supported
vorticity �eld ��� � ����x� is given by the integral

E �
�

��

Z
dx

Z
dx�

����x� � ����x��
jx� x�j � ���

where jxj is the length of the vector x� To specialize this integral to the case of a �lament� suppose
the �lament center�line can be approximately mapped on a connected set of N bonds of a cubic
lattice� then E is approximated by

EN �
X
i

X
j ��i

ti � tj
ji� jj �N� � �
�

where ti is a vector centered at the center of the lattice bond occupied by the i�th piece of the
�lament� parallel to that bond� pointing in the same direction as ��� in the bond� with jtij � circu�
lation of the vortex multiplied by the bond length and divided by

p
��� ji � jj is the straight�line

distance between segments i and j� and � is that portion of the integral in �
� which corresponds
to x�x� in the same bond� The parameter � will play an important role in the next section� it
can be thought of as the energy per unit length of the vortex� if long range vortex interactions
are neglected� and it is the analog of the �chemical potential� of statistical physics� We shall see
that � controls the density of vortex �laments� The device of attaching the vortex to a lattice
is convenient� and produces very little loss in generality� The �lament has many con�gurations�
Assign to each con�guration the �Gibbs� probability Z�� exp���EN �� where Z is the appropriate
normalization factor� EN is the energy of the con�guration� � � ��T � and T is the �temperature��
This temperature can be viewed as a mere parameter� its connection with what one usually calls
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temperature is discussed at length elsewhere ���
� The assumed probability distribution expresses
thermal equilibrium� As in two space dimensions� T can be positive or negative� T � � is �beyond
in�nity� rather than below �� negative temperatures occur whenever the maxima of the entropy
and of the energy fail to coincide� If the notion of negative temperatures is not comfortable� view
it as a temporary aberration� by the time we come to a many��lament system the range T � � will
become less important� If this �Gibbsian� probability distribution is assumed� then in the limit
N ��� the vortex �lament is in one of three states� For � � � it is balled up into a crumpled ball�
for � � � it is a straight line� The heuristics of this situation are simple� � � � favors ��assigns
high probability to� low energy states� and low energy for a vortex is obtained by folding it and
allowing the velocity �elds induced by its several pieces to cancel� the converse holds for � � �� It
is the boundary between these cases that is most important� When � � � all the exponents in the
Gibbs distribution are zero� and all con�gurations are equally likely� In addition� con�gurations
with two pieces of the vortex occupying the same lattice bonds are forbidden� by conservation of
volume� A collection of con�gurations of a lattice vortex� all equally likely� with no overlaps� is
known as a �polymer�� because it is often used as a model for a polymer in a solution� A lot is
known about this kind of polymers� in particular from long experience with numerical computation
�
�
� A typical polymer is non�smooth� and has fractal dimension D � �	�� 	 	 	 � The quantity ��D
is known as the �Flory exponent�� If the vorticity has support on a �polymer�� its energy spectrum
has a power law ���� 	�
�
This picture does not change if we replace a single �lament by an in�nite collection of �laments�

as long as they are far enough from each other so as not to feel each other�s presence� The limit
N � � for each of these �laments can be reached by reducing the length of the bonds in the
lattice�
We now claim that it is the �polymeric� � � � state that is important in �uid mechanics

because it attracts other equilibrium states� i�e�� even if one starts with � �� �� one ends up with
� � �� as the result of vortex stretching� Indeed� consider a smooth physical vortex with some
�nite cross�section� It can be modeled as a �nite collection of segments� at a negative � �or else the
�lament is too crumpled to model something smooth�� If the vortex is imbedded in a random �ow
it will presumably stretch ���� 
�
� if its energy is conserved one can see that j�j will decrease until
� � � is reached� assuming the evolution can be modelled as a succession of equilibrium states�
The heuristics here too are straightforward� Vortex stretching creates new bonds without adding
energy� the energy per bond decreases� reducing the temperature� Energy conservation forbids
the crossing of the boundary � � � �see more below�� which is therefore attracting� We thus
have a simple near�equilibrium cartoon of the e�ect of vortex stretching and of the reason for the
appearance of a Kolmogorov spectrum� In two space dimensions� by contrast� there is no stretching�
the temperature of a vortex system is invariant �assuming adiabatic walls�� and there is no universal
spectrum� The conclusion is that a very sparse collection of thin vortex �laments will end up having
an in�nite temperature� with each vortex �lament having a fractal centerline� The constant � plays
a secondary role� further analysis shows that it plays a role in creating intermittency� which does
not concern us here�

� A collection of vortex �laments

We now consider many �laments� The signi�cant parameters in the problem are � � ��T � as before�
and �� the �chemical potential�� de�ned in Eq� 
� The equilibria of many�vortex systems have been
studied numerically �see ��� ��� �	
�� and they exhibit a phase transition line that is no longer on
the � axis �� � �� in the ��� �� plane� As before� smooth vortex �laments live on the small � side
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of this line �which includes the half plane � � �� since negative temperatures are �hotter� than
positive temperatures�� and vortex stretching draws them to the transition line� Note that the
numerical vortex lines have a constant cross�section� like some models of super�uid vortex lines but
unlike physical vortices� This emphasizes again that a physical vortex line must be approximated
by a cloud of numerical vortex lines�
To understand the situation analytically� we proceed via a Kosterlitz�Thouless �KT� �dielectric�

analysis ���� ��
� which is a two�term expansion in powers of the fugacity y � e���� and applies
to sparse �but no longer one��lament� systems� The analysis of the previous section will turn out
to be the y � � limit of this theory� The �dielectric� formalism is not uniquely de�ned ���
� and
will will pick its easiest version ���
� The formalism has the great advantage of leading naturally
to irreversible extensions of the equilibrium theory�
First� following ���� 	�
 we simplify the vorticity �eld and represent it as a sparse collection of

planar� circular vortex loops� Recent work� in particular by Buttke ��� �
� shows that any vorticity
�eld can be approximated by a union of circular loops �also known as �magnets�� or �elements of
impulse� or �velicity��� indeed� every closed vortex �lament can be decomposed into small planar
loops� Simply span the �lament by a surface� and break the surface into small pieces� assign to each
piece a vortex loop with the same circulation as the original closed vortex �lament� and spanning
an area equal to the area of the small piece� This representation is not unique� as is obvious from
the non�uniqueness of the spanning surface� and this creates problems when entropy is calculated�
furthermore� the surface elements on the surface must coalesce into a coherent surface� and are not
free to rotate as will be assumed in the argument that follows now� The loop representation thus
constitutes a substantative simpli�cation ���
� and we shall not dwell on the errors that it produces�
One can attach to each small planar loop �or �magnet�� so called by analogy with magnetostatics�
an arrow perpendicular to its plane and oriented by the direction of the vorticity in the loop� such
an oriented magnet will be denoted in this section by m�
Suppose for a moment that the temperature T of the system of vortex loops is small� and accept

the idea that the temperature de�ned above as a parameter in a Gibbs distribution does indeed
correspond to what is usually thought of as temperature� If T is positive and very small� there
will be very few loops in the system and the impulse they carry will be small� The impulse of
a vortex loop is the integral �

�


R
loop

x � ds � where 
 is the circulation in the loop and ds is an
element of arc length� if the loop is planar� the impulse reduces to 
A� where A is the area spanned
by the loop ���� ��
� As the temperature increases� there will be more loops and larger loops� As
long as the loops are small and disconnected� the loop representation presents no problems� the
loops are independent and their spanning surfaces can be easily chosen by a common convention
�for example� as the minimal surfaces attached to each loop� for a detailed analysis� see �
�
�� The
growth in the number of loops and in the size of the loops are related� If one takes a large loop and
places inside it a smaller loop with opposite orientation� the energy of the combined con�guration
is reduced and its appearance is more likely �this is �polarization��� thus a cloud of small loops
allows large loops to form� Eventually� it becomes possible for an in�nite loop to form� The result
is a percolation threshold and a phase transition in the vortex system ��� ��
� In the theory of
super�uids� this phase transition corresponds to the transition from a super�uid to a normal �uid�
we shall argue below that this is also the attracting equilibrium for a classical �uid �i�e�� for the set
of �excitations�� or modes of motion� that make up turbulence is the usual type of �uid��
We are going to look for the transition through the use of a �dielectric model�� the analysis

follows on the whole the �rst part of the analysis given by Williams �	�
 as modi�ed in ���
� Consider
a single vortex loop� assume that all the other loops create a polarizable background that modi�es
the energy of the loop� and we ask for the range of the parameters �� � for which this picture is
self�consistent� The boundary of that region will be the phase transition line�
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Suppose a velocity u is imposed on the cloud of vortex loops� The loops will orient themselves
so as to oppose that velocity� The reduction in energy due to the presence of a magnet m is
�
�
m � u� The average polarizability of the loop� i�e�� the average value of m�u divided by u � juj
is �

��
�m�� where m � jmj� This calculation can be found e�g in ���
� One averages over all solid

angles� weighing each by the appropriate Gibbs factor which favors lower energies� We already
know that m � 
�r�� where r is the radius of the loop� thus polarizability is a function of r�
Next one has to �nd the density of loops of radius r� We view the number of loops as variable�
and thus it is the grand�canonical ensemble that is relevant� In order to use this ensemble in a
classical �uid mechanical context� where loops cannot be created by thermal �uctuations because
of the conservation of circulation and can only be created by vortex stretching and reconnection�
one has to invoke a generalized ergodic principle ���
 to the e�ect that thermal equilibrium will not
be denied regardless of the precise mechanics involved�
The grand�canonical partition function is an expansion in powers of the fugacity y � exp���

�loop�� where �loop is the energy needed to create a single loop of radius r� For an isolated circular
loop this energy equals �r log r� where �� the energy per unit length of the vortex loop� is closely
related to the � of Eq� 
 above� The coe�cient of y is the partition function for a one�loop system�
the sum of possible states of that system per unit volume times their Gibbsian weights ���
� If the
fugacity is small enough one can be content with this single term which is then the density of the
the loops of radius r� �Note that the zero�order term in y does not contribute to the polarization��
To enumerate all states one needs an estimate of the smallest length scale in the problem� For

a collection of thin circular �laments it is natural to take the small diameter � of the �laments as
this smallest length scale� In a unit cube there are ��� possible loop centers� All orientations of the
loops are possible� albeit with di�erent probabilities� There are ��r�dr��� distinct orientations of
a loop with radius between r and r � dr� Each of these has to be multiplied by the corresponding
Gibbs factor exp���E�e�� where E is the energy of interaction between the loop under discussion
and all the others� and e � e�r� is the dielectric �constant�� which� in the absence of a scale
separation between large and small loops� may well be a function of r� In fact� one must �gure out
how a loop of radius r is formed and write a history�dependent expression for the potential in the
Gibbs factor� see ���
� but we shall not need this degree of re�nement� In a low�fugacity system�
E is negligible� The dielectric constant is the sum of all these contributions as r ranges from � to
in�nity� It is customary to introduce the function K � K�r� by e�r� � ��K�r�� Note that the
unknown e or K appears in the exponential� We shall assume for simplicity that K is in fact a
constant� the equation for K is nonlinear�

K�� � ��� � c�

Z �

�

r� exp��Kc�r log r��dr � ���

where the constant c� can be evaluated from the preceding discussion� and is proportional to �
���

�More precisely� c� � ������
�
����� the powers of � come about as follows� Two from the formula

for polarizability� one from the enumeration of states due the rotations of the loops� and one from the
�� in the relation between loops and the induced velocity ���
�� The estimation of the parameter
c� involves some elaborate manipulations� The easiest way to �nd it is as follows� Assume the
energy of a loop can be found as the product of an energy per unit length of the �lament �de�ned
in Eq� 
 with bond length �� times the length� this requires dropping log r from the de�nition of
the energy of a loop�a small error �in ���
 it is shown that this simpli�cation is entirely legitimate
for fractal loops� but we are not invoking a fractal loop model�� Now we need only the energy per
unit length of the numerical vortex� Suppose the vortex is approximated as a sum of blobs� Let
Q be the energy of the motion due to a single blob of radius �� Q may have to be found from a
numerical integration of an integral such as ��� over the support of the blob� In setting up this
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integration� one must carefully account for the assumed direction of the vorticity �eld in the blob�
Q is an attribute of the numerical method� and remains �xed as long as the same blob function is
used� For the �th�order Beale�Majda blob �	
 Q � 		��� A simple scaling analysis shows that if the
blob radius is � rather than �� the corresponding energy is Q��� The circulation 
 multiplies this
energy by 
�� If there are M � ��h blobs per unit length of the vortex� where h is the inter�blob
distance� then � � Q
��h��
Equation � can now be rewritten in the form

T � ��� � K�� � c�

Z �

d

r� exp��K�r�dr 	 ���

As was noted by Hald ���
� the right�hand side of �	� is a convex function of K with a single
maximum T� at some K�� For T � T� Eq� 	 cannot be satis�ed with K real� and we are outside
the region of validity of the �dielectric� approximation� i�e�� we have crossed the phase transition
line� As � varies one obtains di�erent values of �� � ��T� which trace out the phase transition line�
sketched for a particular choice of parameters in Fig� �� Note that this graph is consistent with the
single��lament model� As ��� the system becomes more sparse and the phase transition line is
asymptotic to the � � � axis� which was the result of the preceding section� Note that K changes
across the phase transition line� We have K � � to the left� the integral equation yields a complex
K on the right� but by then the model does not apply as it stands�
The discussion just given has heuristic elements and mathematical di�culties ���
� Its great

advantage is that one can imbed into the �dielectric function� formalism a non�instantaneous
response of the loops to a variable imposed velocity� and as a result obtain a description of non�
equilibrium phenomena �near� the equilibrium con�gurations we have just calculated ��� ��� ��
�
This is an important point� in particular because it reconciles the �equilibrium� model with the
irreversible aspects of turbulence� but it does not otherwise concern us here� see ���
� It is comforting
that the results we have obtained agree reasonably well with numerical data �
� �	
� These results
can also be derived by more sophisticated procedures� in particular by a perturbation expansion
on the cold side of the transition and by hydrodynamic methods on the �hot� side� these more
elaborate constructions will be presented elsewhere�
Our assumption is that if an ensemble of numerical vortex �laments is followed accurately� it

will come to reside on the phase transition line� One expects the vortex centerlines to become
fractal� as in the very sparse system of the previous section� and thus it is not expected that a
straightforward numerical calculation will do a good job of following the collection to its resting
place� However� the information available about the phase transition line can be put to good use
and improve the numerical calculations� as shown in the next section�

� Renormalization and hairpin removal

The dielectric formalism lends itself to a renormalization group analysis �see ���� �	
�� of which we
are now going to produce a simpli�ed version� Di�erent applications of renormalization groups in
�uid mechanics can be found can be found in ��� ��� ��� 	�
�
Renormalization group �RNG� methods� as they are used in �uid mechanics� are methods

for simplifying many�body systems so that they contain fewer �bodies� �here� vortices� elsewhere
often Fourier amplitudes� and are easier to deal with numerically� RNG methods are also closely
related to large�eddy simulation methods� that relationship rests ultimately on the fact already
mentioned that turbulent systems live on a phase transition line ���
� We shall present a version
of the RNG with the following assumptions� The non�equilibrium aspects of the inertial range
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will be disregarded �and in particular� we shall pursue calculations over times so short that energy
dissipation can be neglected�� and we shall adhere to the constant K model used above� where K
is a constant that satis�es a certain nonlinear equation� In a more general treatment� one has to
allow K to vary with scale�
The typical vortex calculation is made in terms of vortex �laments rather than vortex loops

�the di�culties in using loops are analyzed in detail in �
�
� one context in which loops are useful
is near walls� see �

� 	

 and below�� We shall �rst consider a hypothetical calculation that does
use loops� and then translate the results to the language of �laments�
Suppose you have a collection of vortex loops with inverse temperature � and chemical potential

�� with values that correspond to the transition line� On the �cold� side of the line one has a
dielectric constant K � K��� ��� which has been calculated at the same time as �� given � and the
other constants� ���� is the maximum of the right�hand side of Eq� � reached at the appropriate
value of K � K��� On the �hot� �high T � ��� side� the theory above is not de�ned� complex
values of T are meaningless� To the extent that this theory can be taken seriously� one can think
that it breaks down slowly �for example� as a result of a gradual build�up of large scale vortices�
and that on the transition line K � K�� i�e�� one can assume that the K from the left extends to
the boundary� This is not an obvious conclusion� and we expect to examine it carefully in later
work� Notice in particular that in the previous section� as in other folding transitions ���
� there
are three distinct states� one on each side of the transition line and one on the line itself�
Assuming that K is known on the transition line� and that one has an equilibrium critical

state� suppose that all loops of radius r � d are simply deleted from the calculation� The total
contribution to the dielectric constant of the loops deleted is

e�d� � ��K � � � c�

Z d

�

r� exp��K��dr � � � C�d� � �	�

and the remaining loops have interactions lowered by � � C�d�� In an homogeneous medium all
one has to do is reduce the strengths of all the vortices by this factor� � � C�d�� Hopefully� d
is large enough so that the motion of the remaining loops can be followed accurately� but not so
large that the �nite rate of relaxation of equilibrium of the loops of scale d cannot be neglected in
what is only approximately an equilibrium theory� One can easily see that the larger the loop� the
longer is the time it takes to relax to equilibrium� indeed� if it is large enough it will never relax to
equilibrium in the presence of external stirring� We have thus succeeded in imposing the correct
asymptotic properties of the collection of vortex �laments on the numerical calculation� leaving for
direct computation a task that has become more a�ordable�
A special case that is particularly easy to deal with is the one of a very sparse collection of

vortices� One can go through the formalism above and see that the renormalization parameter
��C�d� is very close to � for a sparse collection� Indeed� for a sparse collection one should be able
to use the one�vortex theory of the preceding section in which the critical line is � � �� On that line�
all the Gibbs factors are unity� there is no polarization� and small loops can be removed without
penalty� as was indeed done in ��

� The enormous gain in computer e�ort and the negligible cost
in accuracy are exhibited in that reference�
In the discussion so far we have pretended that the computational elements were circular loops

and that the system was homogenenous� Neither assumption holds in practical computation� First�
one normally computes with vortex �laments of general form rather than with circular loops� One
can use Buttke�s theory ��
 to transform the general loops into circular loops� but the resulting
algorithms are very expensive� To apply the renormalization just described in a vortex �lament
representation one has to be able to recognize loops of a given scale� Vortex loops of arbitrary
shape can be divided into vortex �laments of smaller size� one can use the local curvature of the
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�laments as an indicator of the scale of the appropriate smaller loops� There is no unique way of
doing that� Experience seems to indicate that it is very di�cult to recognize the scale of loops in
calculations based on vortex elements which do not individually have zero divergence �for example�
with vortex �arrows��� The issue is discussed in ��

 and� with much more detail� in �
�
�
Another issue that will be addressed in �
�
 is the modi�cation of the renormalization for

inhomogeneous systems� To a �rst approximation� when C�d� is small� the inhomogeneity can be
ignored as was done in ��

� However� this is not a satisfactory general method� If one considers
two patches of vorticity at some distance from each other� with no vorticity in between� the velocity
�eld due to one patch moves the second patch as a whole� the polarization of loops inside a patch
a�ects the velocity distribution within the patch but not the velocity of the patch� The issue that
arises here is the issue of galilean invariance in hydrodynamics� for an early seminal discussion see
���
�

� More on the magnet representation

As was already mentioned above� several authors ��� �
� ��� 	�
 have noted the possibility of writing
the Euler and Navier�Stokes equations in three space dimensions in terms of �magnetization� �or
�impulse�� �velicity��� Buttke ��
���
 has constructed a numerical method based on this represen�
tation coupled with a blob molli�cation� this numerical method gives rise to a Hamiltonian system
at each level of approximation� Cortez �


 has shown how to adapt the high�accuracy blobs of
vortex theory to produce high�order accurate magnet approximations� It is shown in �

� 
�
 that
the magnet representation in free space is not trouble�free� the amplitude of the computational
elements is proportional to the area of certain �normal� surfaces� and can grow without bound
even when the vorticity remains uniformly bounded� To run successfully� one has to introduce
sophisticated remappings� However� near walls� magnets can be very useful� in particular because
they allow the creation of vorticity at walls in three space dimensions in the form of closed loops�
and thus make hairpin removal�renormalization much easier� The di�culties one can encounter in
creating loops by other means are described in �	�
�
To develop the magnet representation� start with the observation that the velocity u is the

vector potential for the vorticity� ��� � curl u� In a simply connected domain the addition of grad q
to u leaves ��� invariant �we consider only the three�dimensional case�� Given an arbitrary q at
t � �� one can �nd equations of motion for m � u� grad q� In the Euler case �R � ��� if
m� �m��m��m��� u� �u�� u�� u��� these equations are

Dmi

Dt
� 
tmi � uj
jmi � �mj
iuj ���

u � Pm � ���

where P is the Hodge projection that extracts from m its divergence�free part that is tangent to
the boundaries� �The addition of viscosity adds a term R�� m to ���� and requires a careful
consideration of boundary conditions� because P and  do not necessarily commute in the presence
of walls�� If the vorticity ��� has support in a �nite ball B� it is possible to pick q so that at t � ��
m � � outside B� and then m retains a compact support for all t � �� This condition is however
not su�cient to �xm uniquely� We shall henceforth assume that m has compact support if ��� does�
To construct a Lagrangian numerical method� write m �m�x� t� �

P
iMi�t����x�xi�� where

�� is a locally supported blob centered at xi� The equations of motion for this m are easily found�

ESAIM� Proceedings� Vol� �� ����� pp� ����



A�J� Chorin � Microstructure� Renormalization� and More E�cient Vortex Methods ��

from ��� one �nds

d�Mi�k
dt

� ��Mi�j
kuj�xi� � ���

where �Mi�k is the k�th component of Mi� in addition�

dxi
dt
� u�xi� � u � Pm � ���

where the projection is to be performed on the function m de�ned by the magnetization blobs ��
�magnets��� This is easily done� One can check that for all t � �� the m produced by Eq� ���
di�ers from u by a gradient q � q�x� t�� Write q � !qi� ui �Mi���x� xi� � grad qi� hence  qi �
�div�M��� � � Laplace operator�� let �� �  

����� then qi � div�Mi���x � xi�� � �Mi�k
k���
�grad qi�k � �Mi��
�
k��� and �ui�k � �Mi�k�� � �Mi��
�
k��� Finally� u�xi� �

P
j uj�xi� �the

velocity at a point is the sum of the velocities generated by all the loops��
One can readily verify that the system ���� ��� is Hamiltonian� with HamiltonianH � �

�

P
iMi �

ui� The variables �Mi�k� �ui�k are conjugate� The vector m has velocity units� and the units of
M are velocity � volume� One can also check that the velocity �eld ui due to the i�th magnet is
identical at large distances to the velocity �eld due to a small� circular vortex loop �see e�g� ���
��
Thus the �magnet� representation is a loop representation like the one we used for KT theory�
In vortex methods� the no�slip boundary condition is usually satis�ed by creating vorticity� At

each boundary point� the velocity defect can be readily found� and a vortex �arrow� created� Arrow
representations require care under the best of circumstances �		
� but are particularly awkward when
one sets out to recognize and remove small loops �� hairpins�� It is di�cult to string the arrows
into closed loops� The magnet representation neatly side�steps the problem�
The key observation is that force acting on a �uid imparts impulse to the �uid� Impulse is

identical with magnetization� There are many ways of using this observation� corresponding to the
multiple choices of gauge in the de�nition ofm� One possibility is to start by creating vortex sheets
at walls� calculate the impulse associated with them� and replace them at some point by loops of
equal impulse� A complete construction is given in �	

� These loops are then fodder for hairpin
removal�

� Conclusions and warnings

We have produced a theory that leads to implementable algorithms for simplifying vortex calcula�
tions and taming their microstructure� The idea that much of the microstructure is either unneeded
or misleading is natural� the theory has the added advantage of providing a systematic approxi�
mation procedure which in principle can be used to gauge the reliability of the simpli�cation� The
theory� as presented here� rests in particular on the idea that if one could follow the approximate
vortex representation accurately� one would obtain a good approximation to the Euler equations
even for long times� the truth of this idea is not self�evident� and it must be viewed as only a
plausible guess�
At several places in the analysis various simpli�cations were made� which must be examined in

greater detail� The KT �Kosterlitz�Thouless� dielectric model is open to various challenges� and its
continuation across a transition line requires a clearer analytical justi�cation�
Eventually� the KT theory must be replaced by a more general and analytically justi�able �eld

theory of turbulence� Indeed� the KT theory is a a simpli�ed version of a �eld theory for vortex
pairs� An appropriate �eld theory will de�ne the appropriate invariant measures that describe

ESAIM� Proceedings� Vol� �� ����� pp� ����



A�J� Chorin � Microstructure� Renormalization� and More E�cient Vortex Methods ��

turbulence� and allow one also to decide whether vortex descriptions provide an adequate tool for
describing turbulent �ow� Adequate �eld descriptions already exist for super�uid vortices ���
� the
di�erences between super�uid vortices and classical vortices ��
 are beginning to be well understood�
and a �eld�theoretical analysis of vortex interactions and their renormalization is within sight ���
�
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Figure 1: Vortex phase transition line according to KT theory.
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