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ABSTRACT. Two mathematical models of the junction region between
two elastic plates will be compared. One of the models is due to H. Le
Dret and was derived in the spirit of the Ciarlet-Destuynder method of
asymptotic expansions. The other utilizes a classical Lagrangian formu-
lation and is based on a certain type of geometric modeling. It is shown
that in the case of a right-angle folded plate with “simple clamping,”
the two approaches give rise to one and the same model.
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1. INTRODUCTION

The purpose of this paper is to compare mathematical models of the junc-
tion region between two elastic plates. More specifically, we wish to consider
a model due to H. Le Dret that was derived in the spirit of the Ciarlet-
Destuynder method of asymptotic expansions, and another described by
Lagnese, Leugering and Schmidt that utilizes the classical Lagrangian for-
mulation and is based on a certain type of geometric modeling. The main
point is that, at least in the case of a right-angle folded plate with “simple
clamping,” the two approaches give rise to one and the same model.

Work on modeling of a folded plate originated with Le Dret in a series of
papers [4], [5], [6], [7]; see also the monograph [8]. A family of homogeneous,
isotropic, linearly elastic three-dimensional bodies, consisting of two identi-
cal square plates of thickness ¢ attached perpendicularly to each other, is
considered. The Lamé parameters A., u. of each of the bodies are assumed
to satisfy (A., ) = £73(\, ). This assumption implies that the plates be-
come progressively stiffer in certain directions as £ — 0. The volume forces
are also assumed to be scaled in a certain manner with respect to ¢ with
the precise scaling hypothesis depending on the assumed boundary condi-
tions (i.e., either simple clamping — one of the two extreme edges is clamped
and the other is free, or double clamping — both of the extreme edges are
clamped). The idea is to show that under such scalings one may pass to
the limit in the variational equations of the 3-d bodies as ¢ — 0. The limit
model consists of a pair of 2-d equations of Kirchhoff type for the static equi-
librium or dynamic motion, as appropriate, of the transverse displacements
of the references surfaces of the two plates, the usual boundary conditions at
the outer edges, and certain coupling conditions along the edge line formed
by the intersection of the reference surfaces. The coupling conditions dif-
fer according to whether the configuration is simply or doubly clamped but
in any case have reasonable geometric and mechanical interpretations. In
the case of double clamping the coupling conditions are all local, but in the
case of simple clamping some of the mechanical coupling conditions (balance
laws) are nonlocal. Also, in the case of double clamping, continuity of the
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displacement vectors of the reference surfaces along the junction region may
be lost in the limit.

Although Le Dret also considered more complicated configurations of
linked plates (for example, two square plates meeting at an arbitrary angle),
the approach described above, while very general and powerful, is suitable
for modeling only relatively simple configurations. In contrast, the mod-
eling approach introduced in [2] and [3] can be used to obtain models of
the dynamics of quite complicated configurations in a fairly straightforward
manner. In this approach, one begins by considering a two-dimensional net-
work in IR, which is a subset of IR® formed by the union of a collection of
relatively open, connected 2-d sets P;, ¢ = 1, ..., n, each having a Lipschitz
boundary consisting of a finite number of smooth curves, such that

i) PinP; =0, Vi#j;
(i) Uiz 177 is a connected set in R?;
(i) P; 077] is either empty or is a finite union of linear components, Vi # j.

We fix an orthonormal basis aj, a3 in P; and set aj = aj x a;. The set P; is
considered as the reference surface of a thin uniform plate whose reference
configuration is

B; = {P; + &aly, 0 < & < e},

where ¢ is a positive constant not depending on i. A junction of the network
is a maximal, open line segment ./ such that J C P; N P; for some i # j.
Without loss of generality, it may be assumed that the junctions are mutually
disjoint (see [3, Chapter VI, Section 2.1]). The index set Z(.J) of a junction
J is by definition

I(J)={i€1,... n]|J C P}

Introduce Cartesian coordinates (&1,&3) in P; by writing

- {po + Zfa =P 51752” (51752) € Qz}v

where pé € P; denotes the origin of coordinates and Q; C IR2.

REMARK 1. Greek indices in a summation always take the values 1,2, while
Roman indices take values 1,2,3 unless otherwise explicitly indicated.

Each plate B; is assumed to satisfy the basic kinematic hypothesis of
Reissner-Mindlin plate theory: the position vector to the displaced particle

originally at p; (&1, &) + &al is given by
P'(&1,6) + &AL &), (§,&) €, 0< & <, (1)

where |A%| = 1. Since we are interested in the dynamic deformation of
the network, the quantities P*, A% also depend on the time variable ¢, but
explicit reference to ¢ will usually be suppressed. Set

Pi—pi::Wi:E:WZ al, Aj-—ay:=U'=) U,
J
wi:§:wg al,, u' =) Ulal

The quantity W' is clearly the displacement vector of the reference surface
P;, while U* is associated with rotation of a}. Following [3], a junction J is
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called rigid if the following conditions hold:
Wi=W/' onJ, VijeZI(J));
® =® onJ, Vi,jeI(J));
P -P,=0 onJ, VieI(J);

J undergoes rigid motion only.

2)
3)
4)
5)

The geometric meanings of (2) and (5) are obvious. Condition (4) means
that the membrane strains vanish within the reference surface at the junc-
tion. In (3), ®' is called the rotation vector associated with the deformation
of P; and is a nonlinear constraint between the vectors W¢, U’ and W7, U/
(see Appendix). It implies, in particular, that the angle between P; and P;
remains invariant under the deformation for all ¢, 7 € Z(.J). The linearization
of (3) around the trivial equilibrium may be expressed as

(
(
(
(

(i i)i_l_(i i)i_l_l z’aWi z’aWi i
T -u)v v -u 7T 27' ayi 174 87_2. as

ovi Y i ) (6)

In this expression, v' denotes the unit outward pointing normal to dP; and
T' is a unit tangent vector oriented so that the triple v', 7' a5 forms a
right-handed orthonormal system. Equation (6) is the same as the pair of

equations

= —(r" )yl 4 (w4 (T]'

(Vi . ui) = O'Z']‘(Vj . uj)7 (7)
NI N ow' E ‘
—(r*-u' v —|—2 T i —v I ay
. . . J . J ,
:—(T]-u])uj-l-%(T]‘z‘;vj_V]'Z:.Vj)agv vi,je1(J), (8)

where

-1 ifr'=—77onJ.

1 if =77 on.J
%‘(J)I{

The conditions (2) - (5) serve as “geometric” constraints on the deforma-
tion, along with any other geometric restrictions which may be introduced at
the outer edges of the network (for example, if parts of the outer edges of one
or more of the plates are clamped). Mechanical coupling conditions at the
junction, together with the equations of motion and the mechanical bound-
ary conditions, are then obtained by means of Hamilton’s Principle, where
the variation is taken with respect to deformations satisfying the imposed
geometric constraints (rather, their linearizations), utilizing a Hamiltonian
appropriate to a network of Reissner-Mindlin plates. Certain of the mechan-
ical coupling conditions at the junction turn out to be nonlocal and have
the flavor of those found by Le Dret in the situation of simple clamping
described above. All of the mechanical conditions have plausible physical
interpretations as balance laws. However, the two models (in the case of the
configuration considered by Le Dret) are not directly comparable for two pri-
mary reasons. First, since the Le Dret approach is based on an assumption
of elastic isotropy, it leads to a system of coupled Kirchhoff equations, while
the model based on the kinematic assumption (1), the ad hoc constraints (2)
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- (5) and Hamilton’s Principle involves a system of coupled Reissner-Mindlin
equations. Second, in Le Dret’s model, due to the assumed scaling of the
Lamé parameters A, p. with respect to £, the membrane deformations in
the limit model turn out to amount to rigid motions. Such motion implies
(4) and (5), but is a much stronger constraint. Therefore, to effect a com-
parison between the two models, as a first step the constraints (4) and (5)
are replaced by the more restrictive assumption

the membrane displacements of the reference surfaces are rigid.  (9)

Upon application of Hamilton’s principle, this assumption, together with (2),
(7), (8), leads to a certain model based on Reissner-Mindlin plate theory.
It is then necessary to pass to the limit in this model as the shear moduli
tend to infinity in order to enforce the Kirchhoff-Love hypothesis. When
one carries out the limiting process, one finds that the resulting model is
exactly the one found by Le Dret.

The plan of the remainder of this paper is as follows. In the next section,
Hamilton’s Principle is used to derive equations of motion and mechanical
junction and boundary conditions for a 2-d network consisting of n planar
regions which share a common joint J, under the kinematic assumption (1)
and the geometric constraints (2), (7), (8) and (9). In order to compare
against the Le Dret model, it is assumed that all of the reference surfaces
are unit squares and that exactly one or them is clamped at an extreme edge
(the edge not adjacent to the junction) while all of the remaining outer edges
are free. However, we allow the plates to have differing material properties.
The limit model as the shear moduli tend to infinity is derived in section
3. It is observed that when the limit model is specialized to the case of two
identical square plates which are orthogonal to each other, what is obtained
is exactly the model derived by Le Dret.

REMARK 2. The junction conditions found by Le Dret [5] in the case of
a doubly clamped pair of orthogonal plates do not correspond to a rigid
junction as defined above nor to any of the types of junctions defined in
[3, Chapter VII, Section 3]. In all cases, the approach of [3] enforces the
continuity condition (2) while, as noted above, such is not the case in the
model obtained in [5], where continuity of only the tangential components
of displacements at the junction is assured.

2. DERIVATION OF THE MODEL

Let i,j,k denote the standard basis for IR*® and (1,23, 23) denote the
Cartesian coordinates of a point in IR® with respect to that basis. We
consider a 2-d network in IR® of consisting of planar regions P;, i = 1,...,n,
such that

(i) P; is a unit square;

(i) P;inP; =4(0,0,23)| |zs| < 1/2} :=J, for all i # j.
If n = 2 it is further assumed that P; and P, are not coplanar. Let Vf]
denote the exterior unit normal to 9P; along J and set 7 = k. One may
write

P = —511/3 +(&—-1/2)7, 0<& <1

This conforms to the notation of section 1 if we set a} = —v'}, a), = 7, a}, =
aj xa), and Q; ={(£,%)|0< & <1, —1/2< &< 1/2),i=1,...,n. As
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there, the components of the displacement vector W' and the vector U? with
respect to the aé basis are denoted by W; and U;, respectively, j = 1,2, 3.

One plate of the network is assumed to be clamped at its extreme edge;
we assume it to be Py, so that

WH1,&) =0, u'(1,&)=0, 0<& <1, (10)

Further, because of the way the bases were chosen, the continuity condition
(2) takes the form

W0, &2)a) + W3(0, &)al = W (0, &)a] + W3 (0, &)al,
W3(0,&) = Wi(0,&), 0<& <1, 4,5=1,...,n,
while (7) is

(11)

Ui 0,6) = U 0,&), 0<&<1, ij=1,...,n, (12)
and (8) is
i L ow' i ow' i
[—Uza1‘|‘§(az‘8—€l—a1‘8—€2)a3] (0752)

1/ owd oW\ .
= [—Uga{ ‘|‘§(a§ N —aj - 8—52)8%] (0,&2),
0<&<1, iyj=1,...,n (I3)

Consider the constraint (9). It follows from it that the components of mem-
brane displacement w*(&;,&2) with respect to aj, a), are given by

cost; — 1 sin ¥, &1 b}
( —sin?;  cos¥; — 1) (52 - 1/2) + (bzz) (14)

for some rotation angle ¥; and translation vector blal 4 b?al. Since only
linear theory will be considered, (14) is replaced by its linearization

w!(61,6) = il = 1/2) + biay + (= 9i& + b)ay. (15)
From (10), (11), (13) and (15) we deduce that
D =0l=0, b?=0, i=1,...,n, (16)

that

Wi(0,&)al = [9;(&2 — 1/2) + bilal + Wi(0,&)as, i=2,...,n, (17)
where b; := b!, and that
UL0,&)al = Ui(0,&)al + 9, i=2,...,n. (18)
The relation (17) is equivalent to
0i(&2 = 1/2) + b = (a3 - a1) W5 (0, &), (19)
Wi(0,&) = (al-al)Wi(0,&), i=2,...,n.

If Py is coplanar with P; for some index i > 2, then al-aj = 0 and a}-a§ = —1
so that 9; = b; = 0 and Wi(0,&) = —W1(0,&,) for that index. In order
to simplify the presentation, it is assumed that P; and P; are not coplanar
for any ¢ = 2,...,n. (This assumption does not change what follows in any
essential way.) Then we may conclude from (19) that

9 = ki®, b=k, i=2,...,n,



118 JOHN E. LAGNESE

where ¥ := 99, b := by and

1 z 3 .
b az - aj _ismaZ
T - . 9
al -a? sin ag

with «a; denoting the angle between P; and P;, 0 < «; < w. Furthermore,
we obtain

W5(0,&) = K[9(&2— 1/2)+ b], i=1,...,n, (20)
where
o al - a} _ _cosai
" al-al  Lsine
Similarly, using al -a}, = —al -a| and al -a% = al - a}, one finds that (18)

is equivalent to
Ui0,&) = k9, i=1,...,n.
The constraints (12), (13) therefore reduce to
UL(0,&) = U{(0,&), UN0,&) = -k, ij=1,...,n.  (21)

The state variables of the problem are Wé, Uf, Ué, t=1,...,n; and ¥, b.
These are constrained by (20), (21) and

W3 (1,6) = U1 (1,&) = Uz (1,&) = 0. (22)

REMARK 3. In the case where n = 2 and Py is orthogonal to Ps, (20)
reduces to

W3(0,&) = £[9(& — 1/2) + 0], W3(0,&) =0, (23)
and (21) becomes
UL0,&) = UF(0,&), Us(0,&) =F9, UZ(0,&) =0. (24)

We now utilize Hamilton’s principle

5/ (K (1) = U(t) + W ()] dt = 0 (25)

to derive the equations of motion and the mechanical junction conditions.
The Lagrangian employed is based on energy functionals appropriate to
Reissner-Mindlin plate theory. Let p; denote the mass density per unit of
reference volume of the i-th plate, and set m; = ep;, I,. = (¢3/12)p;. Let

Pi

w =[0,1] x [0, 1], dw = d&;d&;. The kinetic energy K (t) is defined by
2K (1 Z/ (m W2 + 1, [8]2) de
- Z/<mi|v’v§|2+fm|w|2> o
+Zmz it =172+ P + €0 do

i y . 5 . .
=5 [ i o+ ar (0% 4 12),
=1

w

where M = Y%, m;k? and "= 9/0t.
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Let & denote the set of all 2 X 2 symmetric matrices. For any e € § define
Cile] € S by

3
i€ 7
Cile] =
le] =~ [€+2m+/\z’
where id is the identity in S and A;, 1; denote material parameters associated
with the i-th plate. The strain energy functional U(¢) is given by

trace (e)id],

n

2U(t) = Z/{Ci[e(ui)] s e(u') + Gielu' + VWi |2 dw,

=1

where
e(u') = S (UL 5 +UjL)

and where A : B = trace ATB, VW& = Y Wiaag, and G is the shear
modulus of the 2 th plate.

Assume that the plates are subject to distributed loadings F* = E]‘ F;aé
only. In order to be consistent with (9) it is reasonable to assume that the
membrane forces in Py vanish |, i.e., F}/ = F} = 0. The work done on the
plate network by these forces is

W(t) = Z/(fi-WH—Mi ‘ut) dw,
i=1v¥

where

£1(¢1,&) :/o F'(&1,&2,&5) dés,
Mi(flfz) = /0 (&3 —¢/2) ZFé(€17€27€3)aé dgs.

Write fi = Z]‘ f;a; The vanishing of membrane forces in 7 implies that
M! = 0 and that f! = flal. Then

win= > [ Awia
;=1 7%

+2::/W{M w4 ki { fi[9(€2 — 1/2) + 0] - f;’ﬁgl}}dw.

We may now calculate (25), where the variation is taken with respect to
test functions satisfying (20) - (22) for 0 < ¢ < 1" and vanishing at ¢t = 0
and ¢t = T. In this calculation, use is made of the following Green’s formula
(see Ciarlet [1])

/ Cile(u))] : e(@t') dw = —/ - div Cye(u’)] dw
+ /8w u' - (Cile(u')v') ds, (26)

where v = (v, v2) is the unit outer normal to dw, v* =3 v,al, and

div Cife(u’)] =) %cﬁﬁ[e(ui)]ag, Cile(u)p' = Cle(ud)vaal.
a8 > 8
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One obtains the following variational equation, which must hold for all suffi-
ciently smooth test functions W3, * and all real numbers 9, b which satisfy

(20) - (22):

0= —M(Eﬁﬁ + bb) + E /{—mZW:f)Wg — 14" -a' +a' - divCie(u)]
=17

— Gt - (0’ 4+ VW) 4 GieWi div(u' + VIWE) bdw

- Z i {at - (Cile(u)]w') + GieWirt - (u' + VIVi)}ds
+ Z/{M A kAf (G - 1/2) — RG]0+ ffﬁ}}dw

—|—Z/f§W§dw, 0<t<T. (27)
=1

Set
7:{(0752)|0<€2<1}7 71:{(1752)|0<€2<1}'

From (27) one obtains the equations of motion

mWj — Gie div(ul + VWG) = fi,
{Ipl i — div C;le(u’)] + Gie(ul + VIVE) = MY, >
where M! = 0, the boundary conditions
Cile(u)]p' =0, v' (0'+VWi) =0 on dw\y,i=2,...,n,
{Cl[e(ul)]ul =0, v (ul+VWH =0 on dw\(yUm), 29)

together with the variational junction condition
M(%59+53) = - Z/{fﬂ A(Cile(u)]p!) + GieWivt - (0* + VL) }dé,
=17

+ 3k [ (Uit - 1/2) - fig)d+ iBde. (0
1=2 w
It remains to interpret (30). On v, (vq,v2) = (—1,0), hence
Cile()v' = =3O} e(u’)]aj
g

2 Mdpe (s + M) 0 i\
= 12 [ﬁljl,lal + Hi(U11,2 + U2,1)az] )
v (w4 V) = =0 = Wy, = =Up = Wy,
where we have used (20) and (21). Further, on v,

L i [ A+ N)
u - (Cile(u')]v') = 2 [—m

Wiv' - (u' + VW) = —k/ (U] + Wi )[9(& — 1/2) + b].

Uf1U11 + kgﬂi(Uiz + U§1)19] )
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Therefore, (30) is

D wa s - 4N2(N2‘|’/\) ;1

M| —99 + bb A e
() = /{ i
KU+ U300+ G (U + W 1016 - 1/2) + e

+3k [ (Uit - 1/2) - fig)d+ Bde. (1
1=2 w
It follows from (31) that the mechanical junction conditions are
it A
= 2
QHZ‘I’/\Z U1,1(07€2) 07 (3 )

=1

5 5 - i€’ i i
Mﬁﬁ = kk/ [_ ,u12 (Uio+ Us ) + Go(Uf + W5 1) (&2 — 1/2)] dgs
1 Y

=1

-|-Zk JUite - 1) - figlas, 33

MB:ZkgGie/(Ul + W) d€2+zk /ff dew. (34)
=1 =2

REMARK 4. In the special case where n = 2 and Py is orthogonal to Ps,
one has k{ = +1, k¥, = 0, ko = 1. If also the material parameters of the two
plates are identical, the last three equations reduce to

Ull,l(()vg?) = _U12,1(07€2)7 (35)

5 2
Depad =it [ |-y vh) + G0+ W) 6 - 172 des
Y

+ / 7262 — 1/2) - £26]dw,  (36)

cpsb =G [+ Wit [ g (37)
~y w

The junction conditions (20), (21), (35) - (37) may be considered as anal-

ogous to those found by Le Dret for a simply clamped folded plate, but

within the context of Reissner-Mindlin plate theory rather than Kirchhoff-

Love plate theory.

3. THE LIMIT MODEL

In order to obtain a model appropriate for comparison with the model
derived by Le Dret, we consider the limit of the model derived above as the
shear moduli G; — oo. First, it is necessary to show the above model is
well-posed in an appropriate functlon space. To that end, we set, for scalar
functions ¢, ¢4, ¢* defined on w and real numbers 9, b,

:Zcplaa;—l—flaé =p'+('a, R= (R',...,R",9,b)
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and introduce the space
H={R|¢ (¢ L}w),a=1,2i=1,...,n; 9,b€ R}

with norm defined by

n . . 5
R2: iz? I.. 1|2 192 b2‘
IRIE = [ (¢ + o) + S MI0P + M1

i=17Y
We further set
V={ReH|, c H' (w),a=1,2;i=1,...,n}
with norm defined by
IRIF =D (Z il + Hciuifl(w)) +[97 + [b[%.
=1 o

Introduce a continuous seminorm o(R) on V' by setting
(0(R)? = 3 [{Cele)]: ) + Geelee + VCP )
i=1""

Define a closed subspace V of V' by
ReV<—
ReV, R',=0,

C'ly = K[ = 1/2)9 + 0],

Gl =@y, Gl ==k, di=1,...,n.

(38)

LEMMA 5. For some k > 0,
o(R) > k|R|lv, VR eV.
Proof. It is sufficient to show that
ReV, o(R)=0=R=0.
Since R!'|,, = 0 and

/{Ci[e(cpi)] : e(cpi) + Gi€|cpi + VCi|2}dw =0, ¢=1,...,n, (39)

it follows from the standard Korn’s Lemma that R' = 0 in w. The junction
conditions (38) with ¢ = 1 then show that

d=b=0, ©l|,=0, j=2...,n
Use of (38) again with ¢ =2,...,n gives
Ohly=Cy =0, i=2,... 0.

Thus R, = 0, i = 2,...,n which, in conjunction with (39) and Korn’s
Lemma, implies that R =0in w, i =2,...,n. Q.E.D.

In view of the last lemma, o(-) defines a norm on V equivalent to that
induced by the topology of V. Let V be endowed with this norm and let H be
identified with its dual space. The usual continuous and dense embeddings
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VCHC V' then hold. We denote the pairing between elements R € %
and R € V by (R, R)y. Consider the variational equation

BBy +oRR) =) [ [ldos ) [ M6l
=1 7% =2 YW

+ Zki/{[ﬁ(gg —1/2) — fi&]0 + fib}dw, YR EV, 0<t<T. (40)
=2 w

Let initial data
R(0O)=Ro eV, R(0O)=R;cH (41)

be given. Write

f_E aj, M_E Mal,, 1=2,...,n,

J O

f'=flal, M'=0, f=(f',... . f), M=M', ... M"),

and suppose that f;, M € L*(w x (0,T)). Then

; / ' [+ ) e

- g 3 . ~ A
ek [ [0~ 12 = s+ 36 e

< CHRHL2(O,T;H)7 VR € L2(07T; H)

for some constant C' depending on f, M. It then follows from standard
variational theory that (40), (41) has a unique solution with regularity

R ¢ C([0,7]; V)N CH[0,T]; H) N C*([0, T]; V).

Then the functions u’ := ¢, W§ =", i=1,...,n, comprise, by definition,
the unique solution of the model consisting of equations of motion (28),
boundary conditions (22) and (29), junction conditions (20), (21), (32) -
(34), and initial conditions (41).

We now wish to pass to the limit in (40), (41) as the shear moduli G; — oo.
In order to emphasize the dependence of the solution of (40), (41) on these
parameters, we denote that solution by R%. The space V and V' likewise
depend on G, so we now denote them by Vg and V{., respectively. Let Ag
denote the Riesz isomorphism of Vs onto V,, so that

(AcR,R)y, = o(R,R), YR,Re V.
We define a closed subspace H.., of H by
Ho={ReH|( e H' (W), ' ==V i=1,...,n, ', =0}.

IfR € H..,

n

IRIE = IRl =Y

i=17Y

(m; ¢ 4 1, |VC|?) dw + EMW + M,
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We further introduce a closed subspace V., of Vg by setting Vo, = VaNH
This space is characterized by

(e w), ¢ el'(w), ¢'=-VC(,
ReV. = ¢ty =0, Vi, =0,
Cly=RIC=1/2048], il =y di=1.0m
IfR €V,, we have

IRIG, = [ Cle(w¢) s e(7¢) d

Note that H., and V., are independent of G;. If H, is identified with its
dual space, we have V,, C H,, C V! with dense and continuous embeddings.
Let A, denote the Riesz isomorphism of V., onto V. ForR € V., A R €
V! is the restriction of AgR to V., that is

(AR, R}y, = (AcR, Ry, YR € Vs
Let G € L%(0,T; H) be defined by

Z / [ g dw+zk / i1/ fiegi+fibyas
= (G,R)r2(07.m), YR EL*0,T;H).
Equation (40) may be written
R+AGR=G inV,,0<t<T. (42)
Write
G=G.+GL, G.cl*H.), GLecL*HL),

where HZX denotes the orthogonal complement of H., in H and where
L*(H.), L*(HL) stand in place of L2(0,T;H.), L*(0,T; HL), respec-
tively. We similarly write C'(Hx), L (V), etc., in place of C([0,77; Heo),
L*(0,T5V), etc. We shall also write G — oo to mean that G; — oo for
t=1,...,n. The main result of this section is the following theorem.

THEOREM 6. Assume that
Ro V., Ri€H., GeclL*0,T;H). (43)

There is a function R € C'(Vy) with R € C(Hy) and R € L2(V.) such
that as G — oo,

RY = R weakly” in L°°(V)) and strongly in L°°(H);
RY = R weakly” in L°°(H) and strongly in L= (V' );
RY = R weakly in L*(V.,).
Moreover, R is the unique solution of
R+ A, R=G,, 0<t<T, (44)
R(0) =Ry, R(0)=R;. (45)
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Proof. From (42) we deduce the energy identity

t
IR 17 + IR, = IRallFr., + IRl +/0 (G(s),R(s)) i ds,
from which it follows that
IR o () + IR F vy < CURNFL + IIRolS, + 1G] 721y (46)

for some constant C' independent of (. Since the right side of (46) is inde-
pendent of G, as G — oo we obtain

R is bounded in L*°(H). (47)

In addition, by using the definition of the Vg norm, we may conclude from
(46) that fora =1,2and i=1,...,n,

c,o;’% + c,og(i is bounded in L™ (L*(w)), (48)
VGilehY + VY] is bounded in L™ (L(w)). (49)

Our notation is as follows:
R = (RYY,... ,R™Y 99 %),
RVG — Z@ZGaé 4 (iGal = Gy (iGal,
[0}

Since RYY|,, = 0, it follows from (48) and Korn’s lemma for 2-dimen-
sional linear elasticity that

o9 is bounded in L®(H'(w)), a =1,2. (50)
Then, from (49) and (50) we may conclude that
C}&G is bounded in L®(L*(w)), a = 1,2. (51)

Statement (47) implies that ¢ — R%(¢) : [0,T] = H is equicontinuous in
G > 0. Further, (47) and (43) imply that

R is bounded in L°°(H),

so, in particular,

¢ is bounded in L®(L?(w)) (52)
and
9%, b9 are bounded in L*=(IR) := L*°(0, T; R). (53)
It follows from (51) and (52) that
¢MY is bounded in L™ (H(w)). (54)

We now use (50), (53) and (54), together with the junction conditions (38),
to conclude that

Ci’G|W, @ZGH are bounded in LOO(HI/Q('y))7 1=2,...,n.
Then (48) and Korn’s lemma give
5 is bounded in L (H'(w)), a=1,2;i=2,...,n, (55)
and then, as above, we may conclude that

¢ is bounded in L (HY(w)), i=2,...,n. (56)
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We may now conclude from (50), (53) - (56), upon passing to the limit as
(G — oo through an appropriate subnet of G' > 0, that for some R € L*>(V),

RY = R weakly™ in L>(V),
RY — R weakly” in L°°(H),
oL+ VC?&G — 0 strongly in L>(L*(w)).
Then, writing R = (R',... ,R",9,b), R = ¢ + ('a} as above, we have

Therefore ¢! € L®(H?*w)), R € L”(V.), R € L®(H,,). Since RY is
uniformly bounded and equicontinuous from [0, 7] into H, we also have

R - R in C(H).
In particular, R(0) = Ryg.

Let R € L?(V.) and take the scalar product in L*(H) of (42) with R.
One obtains

T T T
/(ROGO,R>VOOdt:/ (GOO,R)HOOdt—/ (RE R)y_ di,  (57)
0 0 0

where ROGO € V!_ denotes the restriction of R% to V.. Therefore

T
| @, R>vmdt\ < G(HGOOHLW T HRGuLz(VG)) IRl

It follows that
RS is bounded in L*(V').
Then
RS — R weakly in L2(V.).
By the Arzela-Ascoli Theorem,
RS — R strongly in L*(V.,),
so that ¢t — R(t) is strongly continuous into V/, and

R(0) = lim RS (0)=R,.

G—oo

Upon passing to the limit in (57) we obtain

T . R T R R
/[<R,R>VOO—|—(R,R)VOO]dt:/ (Goo, R)g dt, YR € L*(V.),

which is just the variational form of (44). On the other hand, the problem
(44), (45) has a unique solution with R € C'(V.) N C1(H) N CEVL).
Therefore, convergence of R to this solution is through the entire net G' >

0.
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3.1. INTERPRETATION OF THE MODEL

Equation (44) is the same as the variational equation
R,R)y. + R,R)y. = (Goo,R)p., YR € V., 0 <t < T. (58)

The function R has the form (RY,... ,R"™ #,b), where R* = —V (' + ('al.
Since R takes values in V., the components of R must satisfy the boundary
conditions

¢t

5(152,)_ , 0< &<, (59)

M1, &) =
and the geometric junction conditions

Ci(07€27 ) = kl’[(E? - 1/2)19+ bl

60
0 0,5ty = 2 00

a¢t 5, —=(0,&,1), 0<& < 1.

28!

Note that on v and v;, d¢*/J¢; is the derivative of ¢* in the direction of the
normal vector v, up to a sign.

One has
(G R =3 [ (56— M7V o
=1

n

—I_Z: /{ fl 2= 1/2) - fzfl]ﬁ-l-flb}dw

3

{ (fi + div M) (' dw — C(v' - MY ds}
i=1 dw

+ 3k [ (Ui - 1/2) - Sl + fibyde, (o1
=2 w
where M! = 0. Moreover, at least formally,

(R,R)y_ = ;/w(miw 41, VE - VE dw M(E1919+bb)

n

' = 1, A0 ot [ 1,80 v ds}

w

+ M(%@a + '613). (62)
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Also, from Green’s formula (26), we have

n

RR)y. =Y [ Cleve] e(vE) do

_ XZ:{ /8 w;v&) (CHe(VE) YY) ds — /w (VE) - div Ci[e(V )] dw}
zé;{AJV@%«MdVCH ds—/WCE:QW g ds
/CZZCM} dw}. (63)

It follows from (58) and (61) - (63) that the equation of motion of the ith
plate is

— AL+ Zcﬁfjﬁ = fi4divMi, (M' = 0), (64)

which is a version of the dynamic Kirchhoff plate equation. In addition, one
obtains the boundary conditions

ZC?ﬁ[e(VCi)]I/al/ﬁ =0 on dw\y,i=2,...,n,

o8
(65)
ZClaﬁ[e(VCl)]l/al/g =0 on dw\(yU1),
o8
L, (v V() = > CRle(V ¢y ZGWVOMW
o8
=—v'-M' on &,u\'y, i=2,...,n, (66)

ZC vcw——ZGwvmmW
= 0 on dw\(yUm1),

where 7 = (74, 72) := (—vg,v1) and 9/0T =), 7,0/0&,. There is also the

variational junction condition
S [t we- ST+ (76 (CHATC ) de
=1
—I_M(Eﬁﬁ—l_bb) = —iz; WCZ(VZ ]_\/_[Z) ds

+§:k/)ﬁ€r—U® f0+ fibydeo. (67)
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On v we have
(= K& — 1/2)9 + 1],
vi-M' = —Mj,

L' -V - chaﬁ (V¢)Ivg = IpoZ‘FZCM ¢, (68)

(V) - (Cile(VEY =) CHe(VE)IE,
= (YO e(VE)] = EDCH[e(VE].

It follows from (67) and (68) that the following mechanical junction condi-
tions must hold:

S CHE(vE) =0, (69
=1
M?}:Zk;/(Ipig':fl—ZCZ{g[e(VCi)]—I-Mf) d52‘|‘zki/ﬁ dw, (70)
i=1 ¥ o =2 w

5 o & / ¢ a '
M=k / {(52 ~1/2) (fplc — 2 LVl + Ml)
OV }d& + Zk / [fi(&2—1/2) = fi&)dw, (71)

where M{ = 0.

REMARK 7. When n = 2 and P; is orthogonal to P;, the above junction
conditions reduce to

Cie(VE] + Co'e(VE)] =0

coub = 14 [ (14 - >V D)de+ [ 2a

%gpzﬁ—k /{(52—1/2 (mCl ZC )

T 0%2[e<v<1>]}d52 i / 26— 1/2) - F36] de

where kf = 1. If the material properties of the two plates are the same and
if one ignores the rotational inertia term (/,, = 0), these relations together
with (60) are the same as the junction conditions found by Le Dret (c.f. [8,
p. 156]).

4. APPENDIX

Consider a single Reissner-Mindlin plate with reference surface P and
orthonormal basis aj,as, a3 as described in section 1. Let A3 be the unit
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vector associated with the Reissner-Mindlin hypothesis. The vector rotation
angle associated with the deformation of P is a vector

P = Z ¢aaa + QbSa&

where ¢, ¢2, 103 are certain rotation angles which are defined as follows. The
vector ag may be mapped to Az through successive rotations ¢; around
the aj-axis and ¢ around the (rotated) aj-axis. The angle ¢; (resp., ¢2)
measures combined bending and shearing in the azas-plane (resp., in the
ajag-plane). If we choose the positive direction of rotation to be counter-
clockwise, these angles are related to the vector U = A3 — a3 = Z]‘ Uja;

by

U2 Ul
t = — t =
an¢1 1—|—U37 an¢2 1—|—U37
which obviously linearize to
o1 =-Uz, ¢2=01. (72)
To define 13, set
a, + W, t1 Xt

= n—-—m.

¢ |aa—|—W7a|7 |t1 Xt2|
The vectors t, are tangent to the deformed reference surface at P(&q,&z)
but are not necessarily orthogonal. Introduce t/, such that (t{,t}, n) is a

direct orthonormal system and
thta=th-ty, t]-t; > 0.

These conditions uniquely determine t{,t}. Consider the orthogonal trans-
formation mapping a;, az, as to t}, t}, n, consisting of three successive ro-
tations: a rotation 1y around the a;-axis followed by a rotation 19 around
the (rotated) ag-axis such that the two combined rotations maps az to n,
followed by a rotation w3 around n. The first two rotations map a;, as onto
an orthonormal pair af,al in the tangent plane at P(&;,&;) and 13 maps
a}, al, onto t},t,,. The angle 1, (resp., 1)3) measures bending in the azas-
plane (resp., in the ajas-plane); the differences ¢, — 1, are the shear angles.
The angle 3 is related to twisting in the reference plane and satisfies [3,

Chap. VII, Sect. 1.5]

sin gy = 51— (@) - b1) (s ) — (2} - b2) (e - )]

This linearizes to [3, Chap. VII, Sect. 2.4]
3 = %(WQJ -Wig) = %ag -curl w. (73)
It follows from (72) and (73) that the linearized vector rotation angle is
® = —Usya; +Ujay + %(ag - curl w)as.

In terms of normal and tangential vectors, this is

1 ow ow
<I>:—(T-u)u—|—(u-u)7'—|—§(T-a—y—u-a—T)ag.
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