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Instantaneous and noninstantaneous dissolution:
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Résumé. Nous étudions des schémas de volumes finis pour 'approximation de la
solution d’équations non linéaires de diffusion-dissolution. Nous montrons la conver-
gence du schéma, ainsi que la convergence de la solution du probléme continu vers
la solution du probléme limite de la dissolution instantanée. Un cas d’application,
portant sur une expérience de lixiviation du béton, est présenté.
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Abstract. This paper is devoted to the study of finite volume schemes for nonlinear
dissolution-diffusion equations. The approximate solution is shown to converge to
the continuous one, which is also shown to converge in the limit of instantaneous
dissolution. The scheme is applied to the interpretation of an experiment of leaching
of cement concrete.

Keywords. Diffusion-dissolution, finite volumes, singular limit, instantaneous dis-
solution
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1 Introduction.

In several countries one plans to store radioactive waste in deep disposals. The efficiency
of such disposals relies on material barriers. For such a use, cement concrete offers the
advantage of having a weak porosity. Nevertheless, disposal safety relies on the durability
of concrete, subjected to the agression of water, which dissolves the calcium included in
the skeletton mineral constituants (the leaching phenomenon).

It is essential to be able to forecaste the evolution of the porosity and the permeabil-
ity of the concrete, since it is shown that these properties increase with calcium leaching.
Simple models of this phenomenon can be drawn, in order to evaluate its importance. In
such models, only one mineral specie is considered as solvable in the liquid phase, with a
linear kinetics. Then the dissolved mineral molecules diffuse in the liquid phase, yielding

Avrticle published by EDP Sciences and available at http://www.edpsciences.org/proc or http://dx.doi.org/10.1051/proc:1999045



http://www.edpsciences.org
http://www.edpsciences.org/proc
http://dx.doi.org/10.1051/proc:1999045

42 Instantaneous and noninstantaneous dissolution: approximation by the finite volume method

a displacement of mineral mass towards the boundaries of the material. The limit prob-
lem in the case of instantaneous diffusion turns out to be a free boundary problem, since
the domain is separated into two regions: a first one in which all the solvable mineral
molecules are dissolved and in which the concentration in the liquid phase is equal to
zero, and a second one in which there remains some unsolved mineral molecules in the
solid phase, and the concentration in the liquid phase is close to the saturation concentra-
tion. It is of interest to study the influence of the kinetics of dissolution compared to the
kinetics of diffusion which is slowed down by the tortuosity of the porous medium. We
do so in this paper by seeking numerical approximations of the continuous solutions, and
by comparing the mathematical behaviour of schemes in both the cases of instantaneous
and noninstantaneous dissolution. This study also yields a complete understanding of the
singular behavior of the continuous solution in the limit of instantaneous dissolution.

In order to perform the numerical approximation, we apply the finite volume method
which has proven to be robust and simple when approximating nonlinear conservation
laws. It is well-known that respecting the local conservation of species is one of the easiest
ways to ensure the correct location of the fronts, in both the cases of instantaneous and
noninstantaneous dissolution.

We suppose that the following hypotheses are satisfied :

(i) §is a bounded open subset of RY, with smooth boundary 99,
(i) U and V are given positive constants,
(1) (iii) wo € L™(Q) satisfies 0 <wug < U,
(iv) wp € L*™(Q) satisfies 0 < vy <V,
(v)  Ais a given positive constant.

Our purpose is to find a numerical approximation of solutions of the system

(u+v)e— Au 0
(2) { AU —u) ifv>0
0

vt ifv=0

which modelizes dissolution-diffusion, and of solutions of the system

(u+v)y—Au =0
v.(U —u) =0, withv>0,u<U,

which modelizes instantaneous dissolution-diffusion.

We assume that u satisfies the homogeneous Neumann boundary condition

du 3
(4) 8—n:0, on 9Q x R7,

and that v and v satisfy the initial conditions
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for z € Q.

In what follows we denote by (Py) the problem (2, 4, 5) and by (Pf) the problem (3,
4, 5). Problem (P)) represents a phenomenon of dissolution-diffusion in a porous medium
Q C RN. The function u represents the concentration of a mineral constituant dissolved
in the static liquid phase of the porous medium, and v the concentration of the same
mineral constituant in the solid phase. The dissolved constituant can diffuse in the liquid
phase, and the kinetics of the dissolution reaction is given by a first order law which does
not hold in the case of precipitation. In this law, the positive constant A stands for the
inverse of a dissolution time, and the positive constant U is the equilibrium concentration
at saturation. Problem (Pp) corresponds to the case of instantaneous dissolution.

We now give a definition of a weak solution (uy,v)) of Problem (F)). We use the
notation ¢ := max(a, 0).

Definition 1.1 A pair of measurable functions (uy,vy) is a weak solution of Problem (Py)

if for all T >0
uy € L®(Q x (0,T))NL2(0,T; HY(Q)), vy € L=(Q x (0,T)),

T
/ /Q ([ur(z,t) + (2, )] e(x, t) — Vur(z, ) Vip(z,t)) dedt+
(©) [ [o) + o] (. 0) e = 0,
Jor all y € Ap = {¢ etHl(Q x (0,T)) with ¢¥(.,T) =0}
vy(z,t) = (vo(w) — /\/0 (U —ux(z,7)) dT)-I_, for a.e. (z,t) € 2x (0,7).

Remark 1.2 In (6), test functions cannot be taken in the set
{6 € L2(0,T: HYQ)), v € L0, T H () with (., T) = 0}
since vg only belongs to L ().

The existence and uniqueness of the weak solution of Problem (Py) follows from [10]

and [9].

Definition 1.3 A pair of measurable functions (u,v) is a weak solution of Problem (Pp)

if for all T >0
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w e Lo(Q % (0,T)) N L0, T; HY(Q)), v € L=(Q x (0,T)),

T
/ /Q ([u(z,t) + vz, )]z, t) — Vu(z, t) Vi (z, t)) dedt+

j[UO(w) + vo(@)]¢ (2, 0) dv = 0,

Q
Jor all v € Ar = {¢p € HY(Q x (0,T)) with ¢(.,T) =0}
v-(U—-u)=0withv >0, u<Uae inQx(0,7).

For a weak solution (u,v) of Problem (Fp), we set w = u 4+ v. The condition
v-(U—wu)=0with v >0and « < U a.e. in Q x (0,7) implies that, introducing the
function ¢(s) := min(s, U), the equalities v = ¢(w) and v = max(0,w — U) hold a.e. in
Q x (0,7). Hence we get from (7) that, for all 77 > 0, the function w is a solution of the
following equation:

w e L¥(Q % (0,T)), p(w) € L*(0,T; HY(Q)),

T
(8) / /Q(w(wvt)lﬁt(%t)—Vﬁp(w)(w,t)VQb(x,t)) drdt+

| Lwo(@) + wo(@)]¢(w, 0) dv =0,
for all v € Ay = {¢p € HY(Q x (0,T)) with ¢(.,T) =0} .

Equation (8) defines a weak solution of a one-phase Stefan problem with the ho-
mogeneous Neumann boundary condition and initial value (ug + vg). The existence and
uniqueness of such a function w is a classical result, presented in [7] in a more general con-
text. Since any solution (u,v) of Problem (Pr) satisfies u = p(w) and v = max(0, w—U),
we deduce the existence and uniqueness of the solution of Problem (Fr).

The organization of this paper is as follows: in Section 2 we define a finite volume
scheme for the diffusion-dissolution Problem (Py). The same scheme is also used for
solving the instantaneous diffusion-dissolution Problem (Pr). In Section 3 we present
a priori estimates for the approximate solution (w7, vr ) of Problem (P)): first L°-
estimates for w7 ; and vy and then estimates on differences of space and time translates
of ur . It is remarkable that these estimates are uniform as well in the discretization steps
as in the inverse of the dissolution time A and yield a convergence proof of the discrete
solution to the weak solution of Problem (Py). The convergence of the weak solution of
Problem (P)) to that of Problem (Pr) is proven in Section 4. Finally we present a realistic
numerical test in Section 5.
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2 Finite volume scheme for dissolution-diffusion equations.

In this section, we define approximate solutions of the Problems (Fy) and (Fr). To this
purpose, we introduce a finite volume space discretization and a time discretization using
Euler’s scheme.

2.1

Finite volume space discretization.

Definition 2.1 (admissible finite volume mesh of Q)

T is
(i)

(i)

(iii)

an admissible finite volume mesh of Q if and only if :
T is a finite set of disjoint open subsets of Q0 such that U K =9,

KeT
the elements of T will be called control volumes in what follows. For all K € T, we

denote by m(K) its measure for the Lebesgue measure of RN. For any (K,L) € T?
with K # L, we denote by ex 1, = KN L their common interface, which is supposed to be
included in a hyperplane of RN, which does not intersect K nor L. Then m(ek,1,) denotes
the measure of ey 1, for the Lebesgue measure of the hyperplane, and ny j, denotes the
unit vector normal to ek, oriented from K to L. The set of pairs of adjacent control
volumes is denoted by & = {(K,L) € T*,K # L,m(exr) # 0}, and for all K € T,
N(K)=A{L e T,(K,L)€ &} denotes the set of neighbours of K,

there exist xge € K, for all K € T, such that :

I —TK

————— =mngy, foral (K,L)€E.
|z — 2k|

We denote by h = size(7) the positive number h = sup §(K), where 6(K) denotes
KeT

the diameter of control volume K. Moreover, dg 1, = |z, — 2| is the euclidian distance

between the points zy and zy, and we then set 7x ; =

m(ex 1)

dk 1,
Let 7 be an admissible mesh and & > 0 a time step. The explicit finite volume

scheme is defined by the following equations.

(10)

The initial condition for the scheme is given by

1
ufe = (K] /K up(x) da
forall K € T 0 1 /
Ve = - vo(z) da
K -
o 778( ) OIx
Wy = U+ U

The explicit finite volume scheme for Problem (P)) is defined by

B w?j'l — W
m(K) [‘?‘] - Z , i, (uf — uk) =0
LeN(K)
for all K € T, forall n € N,
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46 Instantaneous and noninstantaneous dissolution: approximation by the finite volume method

which yields a unique value w}}‘"l, for all K € 7 and for all » € N, and

_l_
v?j’l — (vﬁ —k/\(U—w?‘f"l—l-vﬁ?H)) =0,

11 n+1 n+1 _n+1
(11) U+ g = wWg

forall K € T, forall n € N.

Note that since the left hand side of the first equation of (11) is a strictly increasing

continuous function of v?"’l, the equations (11) lead to a unique pair (u?jl, vﬁj'l). These

v
values satisfy

n n n +
(12) vitt = (vi = kAU = ufFh)

If we take the limit A — oo in the first equation of (11), we obtain

(13) nrl gyt = wit!
for all K € T, forall n € N,

9

which constitutes, together with (10) a numerical scheme for Problem (Fr), since it follows
from (13) that u?™' = min(w}*!, U). The convergence of this scheme has been proved
in [8]. One possibility would have been to study simultaneously the convergence of both
schemes, since we shall see in the following that the a priori estimates do not depend on
A. However, we prefer to show the convergence of the finite volume scheme in the case of
non instantaneous dissolution, after which we prove the convergence of the weak solution
of Problem (P)) to that of Problem (Pr) as A — oo.

Equation (10) formally corresponds to integrating the first of the equations (2) on
the element K x (nk, (n+ 1)k) and defining a suitable explicit approximation of the flux
function across K. An implicit approximation is also possible, and the existence of a
solution of the resulting nonlinear system of equations can be easily proven by a fixed
point method [9]. The study of the explicit scheme is slightly more difficult because of the
conditions on the time step. Equation (11) corresponds to a time integration of the second
equation of (2) and a projection on the set of non negative functions. The numerical
scheme (9, 10,11) allows to build approximate solutions of Problem (Py), denoted by
urg: QX RY = Rand vy : Q2 xR — RT by

(14) { LTk )= e
vr k(e t) = vf

for all # € K and for all t € [nk, (n+ 1)k).

3 A priori estimates.

3.1 [L*~-estimate on u, L*-estimate on v.
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Lemma 3.1 Suppose that hypotheses (1) are satisfied and let T' > 0 be given. Let T be
an admissible mesh in the sense of Definition 2.1 and k > 0 be a given time step. Assume
that the condition

(15) g < — )

g 77
E TK,L

LEN(K)

is satisfied. Then, for all n € N, the sequence (u}.) ke defined by (9,10,11) is such that

forall K €T,

(16) 0<uf <Uforall K €T, forallneN,
which implies in particular that the function ur y defined by (14) satisfies

(17) lurkll=@xomr) < U

Proof By hypothesis (1.7i7), (16) is true for n = 0. Next we suppose that it is
satisfied up to step n and prove that it also holds at step n + 1. Let K € 7, n € N. We
deduce from (12) that there exists a} € [0, 1] such that,

U?x’:l—l - U?( n n+1
(18) —— =agAu" - U).

With this equation, the first equation of the scheme (10) can be rewritten as :

W (14 EAak) = u%(l—L >0 rin)+

. w2
(19) k . .
W Z y TK,LUj, + k‘AO&I(U.
LeN(K)

We deduce from (15)that the quantity in factor of u} in (19) is always nonnegative.
In view of (16) the expression of v3™' in (11) shows that for all K € 7 the sequence
(v )nen is nonincreasing. Some easy consequences are the following ones.

Lemma 3.2 Suppose that hypotheses (1) are satisfied and let T' > 0 be given. Let T be
an admissible mesh in the sense of Definition 2.1 and k > 0 be a given time step such that
condition (15) is satisfied.

Then, for all n € N, the sequence (viy)ke7 defined by (9,10,11) is such that
(20) 0 <opt! <o <o} for all K € T, forallm €N,

and therefore
(21) Yo > mE) it = okl < ool g2y Vm(Q)-

neNKeT
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48 Instantaneous and noninstantaneous dissolution: approximation by the finite volume method

Hence the function vy defined by (14) satisfies
(22) o7kl 22 (% 0,1)) < VT lIvollr2 (0

3.2 Estimate of the space translations of approximate solutions (ur ).

Lemma 3.3 Suppose that hypotheses (1) are satisfied and let T > 0 be given. Let T be an
admissible mesh in the sense of Definition 2.1 and k be a given time step with 0 < k < T.
Let a € (0,1) be given and assume that the condition

m(K)

E TK,L

LEN(K)

(23) E<(l-a) , forall K €T,

s satisfied. Then there exists Fy > 0, which only depends on Q, U, ug and vy such that
the sequence (U} ) ke nen defined by (9,10,11) verifies

(T/k

]
(24) k> mrp(uf —uf)? <

n=0 (K,L)e&

where [T'/k] = max{n € N ; nk <T}.

9

F
«

Note that the condition (23) is stronger than (15). Therefore, the result of Lemma
3.1 holds, i.e. 0 <uf < U, forall K € T, n=0,..[T/k]. The proof of Lemma 3.3 can be
done by following the steps of the continuous estimates. The following lemma, concerning
space translates, is an essential consequence of the previous one, and is the first step which
will make it possible to apply Kolmogorov’s theorem (the second step on time translates
being presented below).

Lemma 3.4 Under the hypotheses of Lemma 3.3, there exists Fy > 0, which only depends
on Q, U, ug and vy such that the function wr i defined by (9,10,11) and (14) verifies

F
(25) / (a7 k(@ + & 1) = urple, 1) dedt < |€](|€] + 2h) —,
Qe x(0,1) o
Jor all € € RN, where Q¢ = {x € Q, [z +&,2] C Q.
The proof of Lemma 3.4 is presented in [7].

3.3 Estimate of the time translations of approximate solutions (u7 ).

Lemma 3.5 Under the hypotheses of Lemma 3.3, there exist Fy > 0 and Iy > 0, which
only depend on Q, U, ug and vy such that the function ury defined by (9,10,11) and (14)
satisfies
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F
(26) / (urp(z,t +7) — urp(z,6) 2 dadt < 7(2—= + Fy),
Qx(0,T—-7) o
for all € (0,T).

It is possible to show compactness properties without Lemma 3.5, using for example
the semi-group method [4]. Nevertheless, this theory only applies to implicit schemes.
We can now apply the following lemma which is a consequence of Kolmogorov’s theorem
(cf. [7]). Tt permits to obtain a strong convergence property in L%(2 x (0,7)) from the
estimates (25) and (26).

Lemma 3.6 Let (f,,)men be a sequence of functions of L?(Q x (0,T)) which verifies

1. there exists My > 0 such that for all m € N, || fiu|l e x(0,1)) < M1,

2. there exists My > 0 such that for all m € N and 7 € (0,7,

/ (fnl@, t+7) = fon (2, 1)) dadt < TMy,
Qx(0,T—-7)

3. there exist Ms > 0 and a sequence of real positive values (b, )men with lim h, =0

m—00
such that for all m € N and ¢ € RV,

/ o4 E8) = fon (2, 8))2 it < |€](1E] + hn) M,
Qx(0,T)

where Q¢ = {2 € Q, [z 4+, 2] C Q}.
Then there exists a subsequence of ( fm)men which converges to an element of L*(0,T; HY(Q))

in the strong topology of L*(2 x (0,T)).

3.4 Convergence of the scheme

The above results permit to prove the following convergence result, since they yield the
existence of convergent subsequences whose limit can be proved to be solution of Problem
(Py) (the proof is given in [9]).

Theorem 3.7 Suppose that hypotheses (1) are satisfied, let T > 0 and o € (0,1) be given.
Then for all € > 0, there exists hg > 0 such that for all (T, k) satisfying

1. T is an admissible mesh in the sense of Definition 2.1 and h = size(T) < hg,
2. k is a time step with 0 < k < T satisfying the condition (23) for the mesh T,

3. ur and vty are given by (9,10,11) and (14), for the mesh T and the time step k,
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50 Instantaneous and noninstantaneous dissolution: approximation by the finite volume method

the following inequalities hold

(27) { HUT,k - u/\HL2(Q><(O,T))

< e
lork — oxllzz@xory < €

9

i.e. (ur ) and (v ) converge to the weak solution (uy,vy) of Problem (Py) as size(T) —
0. Moreover, there exist positive functions Iy > 0 and Iy > 0 of Q, U, ug and vy such
that

F
(28) lullzzo.1m1(2)) < 4/ ;1

and

(29) / (un(z,t+ 1) —ur(z, ) dedt < 7 (25 + Fz) :
Qx(0,T—-7) o

forall 7€ (0,7T), and
(30) loallzes@x(o,y) < llvollzes(q)

4 Limit of the weak solution of problem (P,) as A — o

In this section, we use the fact that the estimates obtained for the approximate solutions
of Problem (P)) do not depend on A. They yield the estimates (28), (29) and (30) for the
weak solution (uy,vy) of Problem (P\) which also do not depend on A. These estimates
are used to prove the convergence of (uy,vy) to the weak solution (u,v) of Problem (Fp)
as A — 0o.

Theorem 4.1 Let Q be an open bounded set of RN with smooth boundary and let T > 0.
We suppose that ug € L=(Q), 0 < ug < U where U > 0 is a positive constant, and that
vy € L*(Q) is a positive function. Let (u,v) be the unique weak solution of Problem (Fr)
and, for all X > 0, let (uy,v)) be the weak solution of problem (Py).

Then

(i) For all A > 0, 0 < uy < U, and there exists a function I’ > 0 of Q, ug, v and U
such that |Juxl| 20111 () < F and
T—71
/ /(uA(x,t—l— 7) — ur(z, 1)) *dxdt < Fr, for all 7 € (0,T),
0 Q

(i1) For all x>0, 0 < wy\(z,t) < wvo(z) for a.e. (z,t) € Qx(0,7),

(iii) uy — w in L*(Q x (0,T)) as A\ — +oo, vy — v for the weak star topology of
L>=(Q x (0,T7)) as A — +oo. In particular the function u satisfies as well the

T—1
inequalities ||ul 2.0, ;1 (0)) < F and/ /Q(u(ac,t—l— 7) —u(x,t)) dedt < Fr.
0
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Proof Items (i) and (ii) of the above theorem are direct consequences of the con-
vergence of the finite volume scheme. Hence there exists a pair of functions (u,0) €
L*(0,T; HY(Q)) x L>=(Q2 x (0,7)) with 0 < @ < U, 0 < & <V, and a subsequence of
(ux,vA)r>0, which we denote again by (uy,v))xs0, such that uy — @ in L*(Q x (0,7))
and vy — ¥ for the weak star topology of L*(2 x (0,7)) as A — 4oco. In particular

T—1
the function @ satisfies as well the inequalities [|%|z2(o ;1)) < F and / /(ﬂ(w,t—l—
0 Q

7) — i(z,t))*dzdt < Fr. In order to prove (iii), we have to prove that (@, ) is the weak
solution of Problem (FPp). Passing to the limit in Problem (P)), we have that

@€ L=(Qx (0,T)) N L20,T; HY(Q)), © € L=(Q x (0,T)),

T
/ /Q ([a(z,t) + o(a, )]z, t) — Va(z, t) Vi (z, t)) dedt+

| Lwo(@) + wo(@)]¢(w, 0) d =0,
forall v € Ay = {¢ € H' (2 x (0,7)) with ¢(.,7) =0} .

It only remains to show that o - (U — @) = 0 a.e. in Q x (0,7).

We set 2y (z,t) fo —uy(z,7))dr. The function z) Converges strongly in L2(2 x

(0,7)) to z(z,t) fo — u(x,7))dr. We consider Ay = fo Jo 2x (@, t)uy(z, t)dzdt. On
the one hand, since vy — © for the weak star topology of L*(2 x (0,7)) as A — 400, we
deduce that A\ — fOT Jq z(x, t)o(x, t)dadt as X — +oc.

On the other hand, for a.e. points (x,t) €  x (0,
and then we have z)(z, t)vy(z, ) < M, or z)(z,t) <

T), either z)(z,t) < Uo(x) holds
s (x) does not hold and U/\(w t) =

_l_
(vo(w) — /\Z/\($7t)) = 0. Therefore A, < %HUOH%Z)(Q), which tends to zero as A — +o0.
Hence we conclude that fOT Jo z(x, t)0(z, t)dzdt = 0.

We extend the definition of wu(z,t), for & € Q and t < 0, by u(z,t) = U. For

all 2 € Q, t € (0,7) and k& > 0, we have f: LU =z, 7))dr < fg — a(x,7))dr.
Hence we have fOT Jolk [ ( ,7))dT]o(z, t)dxdt = 0. Using Lebesgue dominated
convergence theorem, we deduce that fo JoU — a(z,t))o(x, t)dedt = 0, which implies

v(z,t).(U—u(z,t)) =0 for a.e. (z,t) € Qx (0, ) This concludes the proof.
5 Numerical example.

In this section we give an example of application of the finite volume scheme in two space
dimensions. It is applied to an actual experiment, which has been made at CEA, the
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52 Instantaneous and noninstantaneous dissolution: approximation by the finite volume method

French organism devoted to atomic energy [14].

A cylindric, fractured cement paste core is submitted to an accelerated experiment
of leaching. Figure 1 shows the finite volume mesh which has been used to model a two-
dimensional section of the core. An implicit version of the finite volume scheme (9) and
(10) has been programmed and solved using a Newton-Raphson method.

Because of the symmetry of the problem, and because the phenomenon of leaching
remains local on short times, the computational area is only half of the region including
the fracture (rectangle with sides equal to 1,5 cm and 3,5 em). The fracture (2,8 cm long)
is located at the upper part of the left side of the rectangle.

Mesh with 9350 control volumes

_25 b

o

0.5 1
x [em]

Figure 1: Finite volume mesh.

Figure 2 shows the values of u after 17 days of accelerated leaching. The regularity
of the solution can be seen.

Figure 3 shows the amount v of solid phase after 17 days of leaching. The position
of the dissolution front is fully compatible with the observed one for the boundary of the
core. It is late compared to the observed one for the fracture. An explanation is that the
liquid phase in which the core was introduced was continuously jerked, and therefore the
diffusion process in the fracture was hidden by a non measured convective process.
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Values after 17 days

N}
T

P
3l
T

-
T

I
3

calcium concentration in the liquid phase [mol/I]

02 04 06 08 1 12
X [cm]

Figure 2: Concentration in the liquid phase after 17 days.
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