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Abstract. A fully adaptive numerical scheme for solving PDEs based on a finite volume discretization
with explicit time discretization is presented. The local grid refinement is triggered by a multiresolution
strategy which allows to control the approximation error in space. The costly fluxes are evaluated on
the adaptive grid only. For automatic time step control a Runge–Kutta–Fehlberg method is used.
A dynamic tree data structure allows memory compression and CPU time reduction. For validation
different classical test problems are computed. The gain in memory and CPU time with respect to the
finite volume scheme on a regular grid is reported and demonstrates the efficiency of the new method.

Résumé. Nous présentons ici une méthode numérique entièrement adaptative pour les EDP, basée sur
une discrétisation spatiale en volumes finis et une intégration temporelle explicite de type Runge-Kutta.
Une stratégie de type multi-résolution permet d’adapter localement le maillage tout en contrôlant
l’erreur d’approximation en espace. Les flux sont évalués sur la grille adaptative uniquement. Une
méthode de type Runge-Kutta-Fehlberg est employée afin de choisir automatiquement le pas de temps
tout en contrôlant l’erreur d’approximation. Nous proposons en outre une méthode où le pas de temps
dépend de l’échelle, afin d’éviter d’utiliser sur tous les niveaux le pas de temps qui garantit la stabilité
numérique sur le niveau de grille le plus fin. La structure de données est organisée en arbre graduel,
ce qui permet de réduire significativement la place mémoire et le temps de calcul nécessaires. Nous
validons ce nouveau schéma numérique à l’aide de différents cas-tests classiques. Nous estimons le gain
en place mémoire et en temps de calcul par rapport au même calcul en volumes finis sur la grille la
plus fine, afin de montrer l’efficacité de la méthode.
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1. Introduction

Systems of nonlinear PDEs typically arise from mathematical modeling of different chemical–physical prob-
lems encountered in environmental or industrial applications, ranging from meteorology to chemical process
engineering.

Frequently, their solutions exhibit a large range of spatial and temporal scales, which however are inter-
mittently distributed in the space–time domain, e.g. in turbulence or in combustion. Advanced numerical
discretizations take advantage of this property by introducing some kind of adaptivity in space and time.

This strategy allows to reduce the computational complexity of uniform discretizations while estimating and
controlling the error of the solution with respect to the solution computed on the finest regular grid. For the
latter the quality of the approximation can be estimated in many cases. Different school of thoughts have been
entered upon defining adaptive discretizations, a review is beyond the scope of this indroduction.

Some emerge from ad hoc criteria, others are based on more sophisticated a posteriori error estimators using
control strategies by solving adjoint problems [4,28]. Berger and Oliger [5] introduced adaptive mesh refinement
methods, Harten developed first multiresolution based schemes (MR) for conservation laws [19, 20]. Harten’s
approach guided many other extensions and developments by Cohen el al. [8], Chiavassa and Donat [6], Roussel
and coworkers [25, 26]. Starting with a classical discretization either finite volume (FV) or finite differences
(FD), the main idea of MR methods is to control the truncation error by estimating the local regularity of the
solution. Thresholding the coefficients of a multiresolution representation of the solution allows to retain only
few significant coefficients while yielding an error estimate.

For a detailed overview of MR methods we refer to the books of Cohen [7] and Müller [21]. A main bottleneck
of most space–adaptive methods using typically explicit or semi–explicit time discretizations is that, for stability
reasons, the time step is directly related to the smallest spatial step size. This implies that the larger the number
of refinement levels the smaller the size of the time step.

Different attempts have been undertaken to couple adaptive time stepping with adaptive space discretization
of PDEs. Osher and Sanders developed local time stepping for one-dimensional scalar conservation laws where
the space discretization is non–uniform but fixed [23]. Tang and Warnecke [29] presented recently an extension.
Collino, Fouquet and Joly [9,10] proposed another scheme for space-time refinement based on the conservation
of a discrete energy through two different discretization grids. This method is a non-interpolatory scheme whose
stability condition is not affected by the transition between the two grids. Ferm and Löstedt [18] proposed a
local time stepping for adaptive mesh refinement methods coupled with a Runge–Kutta Fehlberg scheme to
choose automatically the size of the time step while controlling the error. Results have been presented for
hyperbolic conservation laws (i.e., Burgers, Euler and the wave equation) in one space dimension.

For adaptive multiresolution and wavelet methods a scale dependent time step has been introduced by Bacry
and coworkers [2]. They applied this method to linear and non-linear parabolic Burgers equation. More recently,
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Müller and Stiriba [22] presented a fully adaptive multiresolution finite volume scheme with locally varying time
stepping and a predictor corrector method. Applications for one dimensional conservation laws are discussed
to show the efficiency and accuracy of the code and first results for Euler equations in two dimensions are
exposed. A pure space–time Galerkin approach for viscous Burgers equation where the time axis is treated
like a space direction has been introduced by Alam and coworkers [1]. Results for one space dimension look
promising, however the extension of this method to higher dimensions seems less advantageous due to the
memory requirement.

The aim of the present paper is to develop an adaptive time stepping scheme with automatic error control
for the adaptive MRA scheme presented in [25,26]. The adaptive time integration method is based on a Runge–
Kutta–Fehlberg method which allows an estimation of the local error in time. The multiresolution transform
automatically detects the local regularity of the solution and hence guarantees automatic grid adaption in
space. The costly numerical fluxes are evaluated on this locally refined while ensuring strict conservativity.
The implementation uses graded tree data structures which allows an efficient representation of the solution on
adaptive grids with reduced memory requirements.

The organization of the paper is as follows: In section 2 the space discretization using finite volumes on both
regular and adaptive meshes is summarized. The time discretization using standard compact Runge–Kutta and
Runge–Kutta–Fehlberg methods for global time adaptivity is also discussed. In section 3 applications of the
adaptive methods compared with the results obtained using a finite volume discretization on a regular grid are
presented and their accuracy and CPU time reduction are studied. We show results for an advection equation
and the viscous Burgers equation, both in one space dimension. Finally, conclusions are drawn and perspectives
for future work is given.

2. Space and time discretization

2.1. Adaptive multiresolution methods using finite volumes

The initial boundary value problem for parabolic conservation laws we consider in the following can be written
as,

∂u

∂t
= D(u) with u(x, 0) = u0(x) (2.1)

for (x, t) ∈ Ω× [0, +∞), Ω ⊂ R
d, and completed with appropriate boundary conditions.

The diffusive flux D depends on u and its gradient∇u. It can be decomposed into D(u) = −∇·F (u,∇u)+S(u)
where F is the flux and S is the source term. For space discretization of Eq. (2.1), we use a classical finite
volume formulation in the standard conservative form.

The computational domain Ω ∈ IRd of Cartesian shape is partitioned into cells (Ωi)i∈Λ, Λ = {1, . . . , imax}.
We then denote by q̄i(t) the cell-average value of a given quantity q on Ωi at instant t,

q̄i(t) =
1
|Ωi|

∫
Ωi

q(x, t) dx

where |Ωi| =
∫
Ωi

dx is the volume of the cell. Integrating Eq. 2.1 on Ωi yields

dūi

dt
= D̄i(ū) (2.2)

In the following, we will describe the space discretization and the time integration applied to (2.2).
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Numerical flux

For the 1D case, Ωi is a segment [xi− 1
2
, xi+ 1

2
] with step size Δxi = xi+ 1

2
−xi− 1

2
. The rhs of Eq. (2.2) becomes

D̄i = − 1
Δxi

(
F̄i+ 1

2
− F̄i− 1

2

)
+ S̄i (2.3)

where we skipped the arguments to simplifiy notation.
Advective and diffusive terms are approximated differently. Roe’s scheme [24] with a second-order ENO

interpolation, is used for the advective part, whereas, for the diffusive part, we choose a second-order accurate
centered scheme. The source term is approximated by S̄i ≈ S(ūi). For a general non-linear source term,
this choice yields second-order accuracy. A tensor product approach is used to extend this method to higher
dimensions for Cartesian geometries.

Conservative adaptive multiresolution scheme

The principle of the multiresolution analysis is to represent a set of data given on a fine grid as values on
a coarser grid plus a series of differences at different levels of nested dyadic grids. In fact, they constitute an
ensemble where each grid is twice as fine as the previous one. The differences contain the information of the
solution when going from a coarse to a finer grid. In particular, these coefficients are small in regions where
the solution is smooth. The data structure needs to be organized as a dynamic graded tree if one wants to
compress data, while still being able to navigate through it. In the wavelet terminology, a graded tree structure
corresponds to the adaptive approximation. Its difference with the classical non-linear approximation is that
the connectivity in the tree structure is always ensured. In other words, no hole is admitted inside the tree.
The difference between both approximations is negligible in terms of required nodes [11].

In this work we have a dynamic tree i.e., a tree that could change in time when needed, some nodes can be
added or removed. Details of the scheme and its implementation are presented in [26].

Multiresolution representation

Starting point is the cell-average multiresolution representation (Harten [19]). The nodes are cell-average
values and two operators are defined to navigate through the tree.

We denote by Λ the ensemble of the indices of the existing nodes, by L(Λ) the restriction of Λ to the leaves,
and by Λl the restriction of Λ to a level l, 0 ≤ l < L. We denote by Ω = Ω0,0 the root cell, Ωl,i, 0 ≤ l < L,
i ∈ Λl the different node cells, ūl,i the cell-average value of the quantity u on the cell Ωl,i, and Ūl = (ūl,i)i∈Λl

the ensemble of the existing cell-average values at the level l. To estimate the cell-averages of a level l from the
ones of the level l + 1, we use the projection (or restriction) operator Pl+1→l

Pl+1→l : Ūl+1 �→ Ūl. (2.4)

This operator is exact and unique, given that the parent cell-average is nothing but the weighted average of the
children cell-averages. For a regular grid structure in 1D, it is simply defined by the mean value

ūl,i = (Pl+1→l Ūl+1)i =
1
2
(ūl+1,2i + ūl+1,2i+1) (2.5)

To estimate the cell-averages of a level l + 1 from the ones of the level l, we use the prediction (or prolon-
gation) operator Pl→l+1.

Pl→l+1 : Ūl �→ Ũl+1 (2.6)
This operator gives an approximation of Ūl at the level l + 1 by interpolation. It is not unique, nevertheless,
in order to be applicable in the dynamic graded tree structure as defined above, this operator must satisfy two
properties:

• It has to be local, i.e. the interpolation for a child is made from the cell-averages of its parent and its s
nearest neighbours in each direction ;
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• It has to be consistent with the projection, i.e. Pl+1→l ◦ Pl→l+1 = Id
For a regular grid structure in 1D, we use as prediction operator a polynomial interpolation on the cell-average
values, like the one proposed by Harten [19]:

ũl+1,2i = I(Ūl; l + 1, 2i) = ūl,i +
s∑

m=1

γm(ūl,i+m − ūl,i−m) (2.7)

ũl+1,2i+1 = I(Ūl; l + 1, 2i + 1) = ūl,i −
s∑

m=1

γm(ūl,i+m − ūl,i−m)

The accuracy order of the multiresolution method is denoted by r. A r-th order accuracy corresponds to a
polynomial interpolation of degree (r − 1). The degree r is therefore related to the number of required nearest
uncles s by the relation r = 2s + 1. The corresponding coefficients used in the computations are

⎧⎪⎪⎨
⎪⎪⎩

r = 3 ⇒ γ1 = −1
8

r = 5 ⇒ γ1 = − 22
128

, γ2 =
3

128

(2.8)

The detail is the difference between the exact and the predicted value. In the 1D case, it is defined as

d̄l,i = ūl,i − ũl,i (2.9)

These coefficients are redundant, the sum of the details for all the brothers of a parent cell being equal to zero
by definition [19].

Given that a parent has 2d children, only 2d − 1 details are independent. Thus, the knowledge of the cell-
average value on the 2d children is equivalent to the knowledge of the cell-average value of the parent and these
2d − 1 independent details. This can be expressed by

(ūl+1,2i, ūl+1,2i+1)←→
(
d̄l+1,2i, ūl,i

)

For more details on this equivalence, we refer to Harten [19].
For a given level l, it can be summarized by

Ūl ←→ (D̄l, Ūl−1)

Repeating this operation recursively on L levels, one gets the so-called multiresolution transform on the cell-
average values [19].

M̄ : ŪL �−→ (D̄L, D̄L−1, . . . , D̄1, Ū0) (2.10)
In conclusion, the knowledge of the cell-average values of all the leaves is equivalent to the knowledge of the
cell-average value of the root and the details of all the other nodes of the tree structure.

Following that procedure, a threshold operation is realized, its consists in removing leaves where the details
are smaller than a prescribed tolerance ε, while preserving the graded tree data structure. One more level is
added in that structure as security zone, to account for the evolution of the solution in the next time step.

2.2. Time integration: Adaptive time stepping

Adaptive time stepping can be introduced in different ways. Here we are using an extension of the Runge-
Kutta-Fehlberg (RKF ) method for PDEs [17]. The main idea of this method is to use two Runge-Kutta schemes
of different order. A comparison of both results yields an estimation of the truncation error which can then be
exploited to control the local error by changing the time step size. For RKFmethod of second and third orders,
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employed here, the same evaluations of the fluxes can be used and hence the additional computational cost is
negligible.

In the middle of the 1960’s, Fehlberg was the first to propose these methods for solving ODEs, when he
discovered a fifth-order method with six function evaluations while another combination of these functions gives
a fourth order scheme [15, 16, 27].

Using ODE notation, we consider du
dt = D(t, u) in the following. Therewith Runge-Kutta formulas of order

p−1 read as follows

ǔm+1 = ǔm +
p∑

i=1

b̌i κi +O ((Δt)p) (2.11)

κ1 = Δt D(c1Δt, ǔm)

κ2 = Δt D(c2Δt, ǔm + a2 1κ1)
· ··

κp = Δt D(cpΔt, ǔm + ap 1κ1 + · · ·+ ǔm + ap p−1κp−1)

(2.12)

For the RKFmethod, we use two Runge–Kutta methods, one of order p,

ûm+1 = ûm +
p+1∑
i=1

b̂iκi +O (
(Δt)p+1

)
(2.13)

and other of order p−1, yielding ǔm+1 (eq. 2.11). The organization of the coefficients of both methods is
displayed in Table 1(a) and the corresponding values of the coefficients for the RKFmethod of second and third
orders are given in Table 1(b).

(a)Organization of the coefficients for RKFmethods (b) Coefficients for RKF 2(3)
c1

c2 a21

c3 a31 a32

...
...

cs as1 ass−1

b̂1 b̂2 · · · b̂s−1 b̂s

b̌1 b̌2 · · · b̌s−1 b̌s

0
1 0 1

1/2 1/4 1/4

1/6 1/6 2/3

1/2 1/2 0

Table 1. Coefficients for Runge-Kutta Fehlberg 2(3) method.

The estimate of the truncation error is defined as the difference between approximations of order p and p−1,
and hence yields,

δold := ||ûm+1 − ǔm+1|| (2.14)
By construction this truncation error δold scales as (Δt)p. Using a time step Δtold, an error δold is produced
and similarly a new step Δtnew produces an error δdesired.

Both are then related by
Δtnew

Δtold
=

∣∣∣∣δdesired

δold

∣∣∣∣
1/p

Therefore it follows that,
• if δold < δdesired, then the time step can be increased;
• if δold ≥ δdesired, then the time step must be decreased.
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This procedure allows to adjust automatically the step size in order to achieve a prescribed accuracy in time.
Nevertheless, when (Δt)new is increased too much, the new predicted value may fail to meet the desired accuracy.
In the present implementation, this is not allowed as we can not go back to the previous time step once the
solution at the new time step is computed due to the low storage memory model we are using. Hence we decided
to limit the increase of the time step by introducing a so–called safety factor (S). The new time step (Δt)new

is chosen such that

−S
2
≤ (Δt)new − (Δt)old

(Δt)old
≤ S

2
This method is typically used for ordinary differential equations to avoid bad choices of the time step. For

memory reasons we can not go back in the evolution once we have computed the solution at new the time step,
as e.g. proposed by [18]. Using a more stringent limiter or a safety factor the choice of non admissible time
steps can be avoided. The drawback of the limiter is that, in case that the initial time step is far from the ideal
time step CPU time could be wasted as the time step can not be increased sufficiently fast. To overcome this,
we define S = S(t) with a exponential decay during the first time steps, i.e,

S(t) = (S0 − Smin) exp
(
− t

Δt

)
+ Smin.

The behaviour of the limiter S(t) for t = 0 is the maximal allowed variation S0 and, for t→∞, it is Smin, where
Smin < S0. In the present paper we use S0 = 0.1 and Smin = 0.01 for all case studies presented in Section 3.
This means that we allow 10% of variation of the time step in the initial time step and after few iterations we
allow only 1%.

The implementation of RKF2(3) is no more costly than the classical RK3, thanks to the fact that it is possible
to use a compact scheme which uses RK2 to calculate RK3 without any additional flux evaluation. In this sense
we compute the RK2

ū∗ = ūnΔtD(ūn)

ūn+1 =
1
2

[ūn + ū∗ + ΔtD(ū∗)]

and RK3

ū∗∗ = (3ūn + ū∗ + ΔtD(ū∗)) /4
ūn+1 = [ūn + 2ū∗∗ + 2ΔtD(ū∗∗)] /3

The storage area in the RKF2(3) is slightly larger than the usual RK3 method because it is also necessary to
store the second–stage of RK2.

2.3. Possible combinations of the different methods

Summarizing the different strategies, i.e., adaptive space discretization using multiresolution techniques,
adaptive time discretization using RKFand local scale dependent time stepping (not presented here), in total
six different numerical schemes can be construcuted:

FV : finite volume discretization with fixed time stepping;
MR : adaptive multiresolution method using finite volume discretization with fixed time stepping;
FV/RKF : finite volume discretization with RKF (for adaptive global time stepping);
MR/RKF : adaptive multiresolution using finite volume discretization with RKF ;
MR/LTS : adaptive multiresolution using finite volume discretization with local but fixed time stepping;
MR/LTS/RKF : adaptive multiresolution using finite volume discretization with local and adaptive time

stepping using RKF .
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A diagram illustrating the possible combination of the three strategies is presented in Fig. 1. The FV scheme
always serves as a reference for numerical accuracy, memory and CPU time requirements. The remaining 5
schemes aim at reducing memory and CPU time while maintaining a similar numerical accuracy of the reference
scheme FV . The multiresolution strategy allows to reduce the number of grid points and controls the approxima-
tion error in space. On the other hand, adaptive time stepping guarantees a desired precision for time evolution.
Furthermore, the local scale dependent time stepping permits to use larger time steps for the large scales than
on fine scales, which leads to further savings of the CPU time. Finally, using the multiresolution strategy and a
combination of the last two time-stepping strategies, we have a fully adaptive space-time scheme MR/LTS/RKF .

For the numerical examples presented in the next section we test, validate and compare the first four schemes.
The two last schemes are work in progress and will be presented in a forthcoming paper.

FV

RKF

MR

LTS

Figure 1. Set presentation of the different discretization methods. Each set corresponds to a
different numerical method and their intersections to possible combinations. FV denotes the
finite volume space discretization, MR stands for the adaptive multiresolution method. The
time discretization is done either by RKF , or by scale dependent time stepping LTS, or by the
RKFmethod and a possible combination of the two latter (hatched region).

3. Numerical results

In this section, we present different numerical examples in one space dimension using finite volume second-
order accurate schemes with third order Runge–Kutta time integration. In the case of an adaptive space
discretization a multiresolution analysis of order r = 3 is used. The global time adaption is done by the Runge–
Kutta–Fehlberg 2(3) method. In the following the different methods are applied to a linear advection and a
viscous Burgers equation.

3.1. Advection equation

First we consider a linear advection equation

∂u

∂t
+ c

∂u

∂x
= 0,

where u = u(x, t), t ≥ 0, x ∈ [−1, 1], and c > 0 is the constant velocity. The boundary conditions are periodic
and the initial condition is

u0(x) = exp
(−50 x2

)
.

In the numerical computations, we chose c=1 and a resolution of 256 points.
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In Figure 2 we show the time evolution of the time step for different initial CFL , i.e., for different initial
time step sizes, using the finite volume scheme on a regular grid with global time adaptivity and the RKF2(3)
method. We observe that the time steps tend to converge in all cases to a time step of ≈ 5.2 × 10−3, , i.e. an
initial CFL ≈ 0.65. To avoid a ”bad choice” of the initial CFL , the code allows a bigger limiter in the beginning
time steps. These ”bad choices” of initial CFL could however increase the global error, as presented in Table 2.
The automatic step size control of the solution reduces the number of time steps and hence the computational
cost (cf. Table 2). We can also observe that the error with respect to the analytical solution computed at the
final time t = 1 is reduced for the time adaptive schemes, compared to the finite volume scheme with fixed time
stepping, except for the initial CFL= 1 using the L∞ norm. In Figure 4 we compare L2, L1, L∞ norms for the
RK3 method with CFL= 0.5 and the RKF2(3) method. The results show that the choice of the initial time step
does not influence the error at the final time instant as all computations yield a similar result. Figure 3 shows
the CPU time spent for different choices of the initial CFL . The CPU time decreases as the initial CFL increases.
This is directly related to the number of time steps needed to compute the solution up to t = 1, as could be
observed in Fig. 5. For this test case, we can thus conclude that RKF2(3) is more efficient than the conventional
RK3 method.
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Figure 2. Evolution of the time step depending on the initial CFLvalue for the finite volume
scheme with global time adaptivity using the RKF2(3) method for the advection equation. Grid
containing 256 points, δdesired = 10−3, Smin = 0.01,S0 = 0.1.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.2  0.4  0.6  0.8  1

C
P

U
 ti

m
e 

(s
)

CFL

const. time step, CFL=0.5

Figure 3. CPU time vs. initial CFLvalue for the advection equation. The grid contains 256
points. The parameters are δdesired = 10−3, Smin = 0.01, and S0 = 0.10 .



190 ESAIM: PROCEEDINGS

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

E
rr

CFL

ErrMax, const. time step CFL=0.5
ErrL2, const. time step CFL=0.5
ErrL1, const. time step CFL=0.5

ErrMax
ErrL2
ErrL1

Figure 4. Errors vs. initial CFLvalue for the advection equation. The grid contains 256
points. The parameters are δdesired = 10−3, Smin = 0.01, and S0 = 0.10.

 200

 300

 400

 500

 600

 700

 0  0.2  0.4  0.6  0.8  1

# 
of

 ti
m

e 
st

ep
s

CFL

const. time step, CFL=0.5

Figure 5. Number of time steps vs. initial CFLvalue for the advection equation. The grid
contains 256 points. The parameters are δdesired = 10−3, Smin = 0.01, and S0 = 0.10.

Init. # steps % CPU Initial Final L∞-error L2-error L1-error
CFL time time step time step

0.50 513 100 3.91e-03 3.91e-03 8.61e-02 1.68e-02 6.84e-03

1.00 367 90 7.64e-03 5.27e-03 8.80e-02 1.65e-02 6.27e-03
0.75 381 96 5.73e-03 5.18e-03 8.52e-02 1.58e-02 5.97e-03
0.50 388 93 3.90e-03 5.15e-03 8.52e-02 1.58e-02 5.97e-03
0.25 452 105 2.00e-03 4.88e-03 8.58e-02 1.64e-02 6.57e-03
0.10 587 133 7.98e-04 4.94e-03 8.56e-02 1.60e-02 6.23e-03

Table 2. Initial CFL , number of time steps, CPU time, initial and final time steps, and errors
for the advection equation. Mesh containing 256 points, δ0 = 10−3, Smin = 0.01, S0 = 0.10.
The first line corresponds to the constant time step with CFL=0.5.

3.2. Viscous Burgers equation

Next we consider the viscous Burgers equation as an example to model shock formation,

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0,
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where u = u(x, t), t ≥ 0, x ∈ [−1, 1] and ν = 10−2/π. The above equation is completed with periodic boundary
conditions and the initial condition is given by,

u(x, 0) = − sin(πx).

Figure 6 shows the initial condition and the numerical solution at πt = 1.6037 computed with the MR/RKFmethod.
Table 3 summarizes the memory and CPU time compressions for the 5 different methods using 3 different max-
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Figure 6. Initial condition and the numerical solution of the Burgers equation at t =
1.6037/π ≈ 0.51 computed using the MR/RKF .

imal scales L = 11, 12 and 13, which correspond to grids of size 2L. First we observe that all space and/or
time adaptive methods require less CPU time than the finite volume method using a fixed time step (FV ).
For example for L = 13 we find that the adaptive multiresolution method with a fixed time step (MR ) only
requires 28% of the CPU time and 19.4% of the memory compared to the FVmethod. Using the adaptive
space discretization with RK3, we reduce by 45% and 63% the CPU time and using MR/RKFwith RKF2(3) we
reduce in 86% and 92% the total CPU time, on the scale levels 11 and 12 compared to FV . Using in addition
adaptive time stepping the CPU and memory requirement can be further decreased. For the MR/RKFmethod
using L = 13 scales we only need 5% of the CPU time with respect to the FVmethod and 17.6% of the memory.
The FV/RKF is competitive with L = 11 scales leading to a reduction of 80% of the CPU time. Increasing the
number of scales to L = 12 requires however more CPU time than the FVand hence we decided not to perform
further computations using this method.

To verify the precision of the different numerical methods we compare the slope |∂u/∂x|max at πt = 1.6037
with the slope of the exact solution given in [3], which yields 152. Table 3 shows that the slope of the numerical
solutions is close to the one of the exact solution, and that the precision is improved for an increasing number
of scales. The introduction of adaptive time stepping does not effect the memory compression and the precision
of the computation. It can also be noticed that when the solution exhibits small scales, the desired accuracy in
time has to be reduced in order to avoid numerical instabilities, like spurious oscillations.

Figure 7 (left) shows the evolution of the time step for both FV/RKFand MR/RKF methods. For the former,
we observe after some initial adjustment an oscillatory behaviour, while for the latter, we find that the time
step follows the dynamics of the shock formation. In Figure 7 (right) we plot the evolution of the time step
for the MR/RKFmethod using different numbers of maximum scales, L = 11, 12 and 13. For late times, .i.e.,
t > 0.4, we see that the time step is decreasing for increasing spatial resolution. At earlier time the evolutions
strongly depend on the the maximum number of scales and we find different behaviors during the evolution.

4. Conclusions and perspectives

We presented and validated a new space-time adaptive numerical scheme to solve PDEs. Starting point is a
finite volume discretization with explicit time interation. Then we coupled the previously developed adaptive
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Method Scales # steps % CPU Time % Memory |∂u/∂x|max δdesired

FV 11 18346 100 100 149.6
FV/RKF 11 4153 20 100 149.5 10−5

MR 11 18346 55 42.7 149.5
MR/RKF 11 3697 14 43.3 147.5 10−5

FV 12 70767 100 100 151.7
MR 12 70767 37 26.2 149.8
MR/RKF 12 13370 8 27.2 149.4 10−6

FV 13 277839 100 100 153.2
MR 13 277839 28 19.4 151.8
MR/RKF 13 56741 5 17.6 150.7 10−6

Table 3. CPUand memory compression for the discretization methods, using an initial CFL=
0.4, ε = 10−2, the limiters are Smin = 0.01, and S0 = 0.10. At πt = 1.6037 we compare the
slope of the numerical solutions with the exact one |∂u/∂x|max ≈ 152.
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Figure 7. Evolution of the time step for Burgers equation from t = 0 to t ≈ 0.51. The final
time corresponds to the maximum slope. Methods FV/RKFand MR/RKFwith L = 11 (left) and
method MR/RKF for L = 11, 12 and 13 (right).

multiresolution scheme [25, 26] with a Runge–Kutta–Fehlberg method to adjust automatically the size of the
time step. We demonstrated the efficiency of the new method for different test problems and studied its
performance by comparing the CPU time and the memory requirements with the finite volume method using
uniform discretization and a third order Runge–Kutta scheme for time integration. As the implemented Runge–
Kutta–Fehlberg 2(3) method uses a low storage in memory, it is necessary to introduce a limiter of the time step
to avoid unappropriated choices of the time step, e.g., large time steps which may violate the precision of the
computation. This limiter is a function of time and it is usually larger during the first time steps. It also avoids
that unappropriated initial time steps increase the CPU time. The computational extra cost of Runge–Kutta–
Fehlberg 2(3) is very low because it is possible to use compact formulas to perform the time evolution, i.e., we
use the previous values from RK2 to evaluate the RK3. The results showed that the Runge–Kutta–Fehlberg
global time adaptivity coupled with the multiresolution technique reduced significantly the CPU time without
loosing accuracy.

The MR/RKFmethod performs a global adaption of the time step, i.e. for all spatial scales the time step
evaluation is based on the precision required by the finest scale. However, it is also possible to combine this
technique with local scale dependent time stepping, which allows different time step sizes for different scales.
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In this case, different scales evolve with different time steps, hence a synchronization of the tree data structure
becomes necessary. This is work in progress and will be presented in two forthcoming papers [12, 13].

On a longer term perspective we also plan to extend this space-time adaptive scheme to the 3D Navier-Stokes
equations together with the Coherent Vortex Simulation method [14] to compute efficiently turbulent flows.

We thank S. Gomes for fruitful discussions. We are also thankful to M–G. Dejean for her helpful assistance.
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