DISCRIMINATING DISTRIBUTED SENTINEL INVOLVING A NAVIER-STOKES PROBLEM AND PARAMETER IDENTIFICATION

JEAN VELIN¹

Abstract. In this paper, we consider a Navier-Stokes system with missing initial data condition and perturbation distributed term or pollution term. We show that a discriminating distributed Sentinel with constraints can be associated to this system and allows to characterize this pollution. Our major result is based on an adapted distributed Carleman Inequality permitting to revisit a study investigated by Lions in [15].

Résumé. Dans ce papier, nous considérons un système de Navier-Stokes pour lequel au terme source est ajouté un terme de pollution et à la donnée initiale est affectée une incertitude ou terme manquant. Nous montrons qu’une Sentinelle distribuée, discriminante avec contraintes peut-être associée à ce système et permet alors de caractériser cette pollution. Notre principale résultat est basé sur une inégalité de Carleman adaptée. Ainsi, nous revoymes une étude abordée par Lions dans [15].

Contents

Introduction 144
0.1. Setting of the problem 144
0.2. A null-controllability problem 146
0.3. Related studies 148
0.4. Notations and Assumptions 148
0.5. Main results 149
1. Proof of Theorem 0.6. Existence of a control 149
1.1. An adapted Observability Inequality 149
1.2. Existence of the best control. 153
2. Proof of Theorem 0.7. A characterization of \hat{k} via an optimal system 156
2.1. Convergence of the minimizing sequence $(k^n_\varepsilon, q^n_\varepsilon, \pi^n_\varepsilon)$ 157
2.2. Some a priori estimates on the sequence $(k_\varepsilon, q_\varepsilon, \pi_\varepsilon)$. 159
2.3. A characterization of the sequence control k_ε. 160
2.4. New definition of \hat{k} 164
3. Proof of Theorem 0.8. A discriminating Sentinel 164
3.1. A use of the concept of sentinel: The identification of the unknown distributed pollution term 165
References 165

* Laboratoire Analyse Optimisation Contrôle.
¹ Université des Antilles et de La Guyane, Campus Fouillole 97159 Pointe-à-Pitre GUadeloupe (FWI). e-mail: jvelin@univ-ag.fr
© EDP Sciences, SMAI 2007
INTRODUCTION

0.1. Setting of the problem

Let \(N \in \{2; 3\} \), \(\Omega \) is a bounded open in \(\mathbb{R}^N \) with smooth boundary \(\Gamma = \partial \Omega \) of class \(C^2 \). Let \(\omega \) be a nonempty bounded open in \(\Omega \). \(T > 0 \) is fixed, we denote by \(Q = \Omega \times (0, T) \), \(\Sigma = \Gamma \times (0, T) \) and \(\omega_T = \omega \times (0, T) \).

It is well known that the following Navier-Stokes system

\[
\begin{align*}
\frac{\partial y}{\partial t} - \Delta y + y \nabla y + \nabla p &= \text{Source term in } Q, \\
\text{div} y &= 0 \quad \text{in } Q, \\
y &= 0 \quad \text{on } \Sigma, \\
y(0) &= \text{initial data in } \Omega.
\end{align*}
\]

is a modelling transportation of a flow \(y(x, t) \) located in the spatial point \(x \) of the domain \(\Omega \) and at the time \(t \in [0, T] \). Moreover, \(y \) is submitted to the pressure \(p(x, t) \) and also to different exterior strengths represented by a source term \(\xi \).

Generally, the mathematical studies on the existence of solutions for Navier-Stokes equations present a perfect sense.

Without a loss of generality, we also assume that the functions \(\beta_i \) are linearly independent in the algebraic sense.

Let us denote by \(\mathcal{K} \), the finite vectorial dimensional subspace generated by the system \(\{m_i \chi_{\omega_T}\}_{i=1, \ldots, M} \).

We are not interested in solving the problem (2) but denoting by \(S_0(\lambda, \tau) = \int_0^T \int_{\Omega} h_0 y(x, t; \lambda, \tau) dx dt \) the global information provided by the observer \(h_0 \) in the observatory \(\mathcal{O} \) during the interval \([0, T] \), our natural motivation consists in analyzing the insensitivity for \(S_0(\lambda, \tau) \) with respect to the incomplete initial data and also the interferences. In others words, can we valid the following conditions:

\[
\frac{\partial S_0}{\partial \tau}(0, 0) = 0?
\]
and
\[
\int_0^T \int_\Omega h_0 m_i \, dx \, dt = 0, \quad \forall i = 1, \cdots, M.
\]

Generally, these statements are not true therefore we cannot obtain some complete information on the pollution term without any sensibility respect to the missing data.

Here, to arise this problem, we plan to revisit the concept of sentinel due to J.L. Lions (for instance one can see [17] which is an introduction on the concept of sentinel and it has been done for some general evolutive system of partial differential equations). We propose to determinate of a function \(\hat{w} \in \left(L^2(\omega_T) \right)^N \) acting on a sub-domain \(\omega \) of \(\Omega \). We set:

\[
\hat{S}(\lambda, \tau) = \int_0^T \int_\Omega h_0 y(x,t;\lambda,\tau) \, dx \, dt + \int_0^T \int_\omega \hat{w}(x,t;\lambda,\tau) \, dx \, dt.
\]

(4)

Then, firstly, the problem consists in looking for \(\hat{w} \) such that the following conditions are satisfied

\(\hat{S} \) is insensitive at the first order to missing terms \(y_0 \):

\[
\frac{\partial \hat{S}}{\partial \tau}(\lambda,\tau)|_{\lambda=0,\tau=0} = 0, \quad \forall y_0,
\]

(5)

\(\hat{S} \) is insensitive to the interfering terms \(\beta_i m_i \):

\[
\int_0^T \int_\Omega h_0 m_i \, dx \, dt + \int_0^T \int_\omega \hat{w} m_i \, dx \, dt = 0, \quad 1 \leq i \leq M.
\]

(6)

Secondly, \(\hat{w} \in \left(L^2(\omega_T) \right)^N \) is such that

\[
\frac{1}{2} \| \hat{w} \|^2_{L^2(\omega_T)} = \min_{w \in \hat{W}} \frac{1}{2} \| w \|^2_{L^2(\omega_T)},
\]

(7)

where \(\hat{W} \) is the collection of \(w \) satisfying to (5) and (6). Assuming that such a \(\hat{w} \) exists, we have the following definition

Definition 0.1. Let \(\hat{S} \) be the real function defined by (4). \(\hat{S} \) is said to be a discriminating distributed sentinel defined by \(h_0 \) if there exists \(\hat{w} \in \left(L^2(\omega_T) \right)^N \) such that properties (5)-(7) are valid.

Remark 0.2. We must notice that the existence of insensitive controls without constraints has been intensively studied for the heat equation and semi-linear in [1], [2], [13] and Stokes equations in [8] describing an linearized oceanic quasi-geostrophic model.

Our study is investigated under geometrical hypothesis. By contrary to [15], we suppose \(\omega \) and \(\Omega \) are not identical. More precisely, we assume \(\omega \subset \Omega \). The next Remark follows.

Remark 0.3. Assume \(\Omega \cap \omega = \emptyset \), then \(\int_0^T \int_\omega w m_i \, dx \, dt = 0 \) thus, to satisfy (6), it is sufficient to choose \(h_0 \) orthogonal to each \(m_i \). Now, assume \(\Omega \subset \omega \), then (6) becomes \(\int_0^T \int_\Omega h_0 m_i \, dx \, dt + \int_0^T \int_\omega w m_i \, dx \, dt = 0, \quad 1 \leq i \leq M \) which is the case of two identical domains discussed in [15]. Thus, without a loss of generality, we can assume that \(\omega \subset \Omega \).
A null-controllability problem

Now, let us prove that seeking for a control \(\hat{w} \) such that (5)-(7) is equivalent to a null-controllability with constraints on the control. We proceed two steps.

Step 1. We consider the functions \(y_0 \) and \(p_0 \) which solve problem (2) for \(\lambda = 0 \) and \(\tau = 0 \)

\[
\begin{align*}
\frac{\partial y_0}{\partial t} - \Delta y_0 + y_0 \nabla y_0 + \nabla p_0 &= \xi \quad \text{in} \ Q, \\
div y &= 0 \quad \text{in} \ Q, \\
y &= 0 \quad \text{on} \ \Sigma, \\
y_r(0) &= y^0 \quad \text{on} \ \Omega.
\end{align*}
\]

(8)

Step 2. Assume that \(\frac{\partial y}{\partial \tau} \) can be defined for \(\lambda = \tau = 0 \). Then, the function \(y_\tau = \frac{\partial y}{\partial \tau}(0, 0) \) solves the problem

\[
\begin{align*}
\frac{\partial y_\tau}{\partial t} - \Delta y_\tau + \nabla (y_\tau \otimes y + y \otimes y_\tau) + \nabla p_\tau &= 0 \quad \text{in} \ Q, \\
div y_\tau &= 0 \quad \text{in} \ Q, \\
y_\tau &= 0 \quad \text{on} \ \Sigma, \\
y_\tau(0) &= \hat{y}^0 \quad \text{on} \ \Omega.
\end{align*}
\]

(9)

(9) is a linear Navier-Stokes problem, more precisely this is a linearized form of (8) around \(y_0 \). Let \(y_\tau \) its unique solution. If \(y_0 \) and \(y_\tau \) solve respectively (8) and (9), then the insensibility condition (5) is equivalent to

\[
\int_0^T \int_\Omega h_0 y_\tau dx \ dt + \int_0^T \int_\omega \hat{w} y_\tau dx \ dt = 0, \quad \forall \hat{y}^0, \quad \|\hat{y}^0\|_{L^2(\Omega)} \leq 1.
\]

(10)

We set \(Dq = \nabla q + \nabla q^i \) and introduce the adjoint state system associated to (9)

\[
\begin{align*}
-\frac{\partial q}{\partial t} - \Delta q - Dq y_0 + \nabla \pi &= h_0 \chi_\Omega + \hat{w} \chi_\omega, \quad \text{in} \ Q, \\
div q &= 0 \quad \text{in} \ Q, \\
q &= 0 \quad \text{on} \ \Sigma, \\
q(T) &= 0 \quad \text{on} \ \Omega.
\end{align*}
\]

(11)

Therefore, let \(\hat{q} = q(\hat{w}) \) be the unique solution, it is well known that \(\hat{q} \in L^2(0, T; (H^1_0(\Omega))^N) \cap C^0([0, T]; (L^2(\Omega))^N) \) depends on \(\hat{w} \) which is to be determined.

Moreover, if we multiply (11) by \(y_\tau \), after integrating by parts over \(Q \), we obtain

\[
\int_0^T \int_\Omega h_0 y_\tau dx \ dt + \int_0^T \int_\omega \hat{w} y_\tau dx \ dt = -\int_\Omega \hat{y}^0 \hat{q}(0) dx, \quad \forall \hat{y}^0, \quad \|\hat{y}^0\|_{L^2(\Omega)} \leq 1.
\]

This last equality combining with (10) becomes

\[
\int_\Omega \hat{y}^0 \hat{q}(0) dx = 0, \quad \forall \hat{y}^0, \quad \|\hat{y}^0\|_{L^2(\Omega)} \leq 1.
\]

Consequently, insensibility condition (5) is valid if and only if

\[
\hat{q}(0) = 0 \quad \text{in} \ \Omega.
\]

(12)

In other words, condition (5) is satisfied if and only if we obtain a control \(\hat{w} \) solution of the null-controllability problem (11)-(12) Now, let us modify the constraints (6). Indeed, since \(K \) is the vectorial subspace generated in \((L^2(\omega_T))^N \) by the basis \((m_1 \chi_{\omega_T}, \cdots, m_M \chi_{\omega_T}) \), there exists a unique \(k_0 \in K \) such that
\[\int_0^T \int_\Omega h_0 m_i \, dx \, dt + \int_0^T \int_\omega k_0 m_i \, dx \, dt = 0. \]
(13)

In other words, the condition (6) is equivalent to

\[\hat{w} - k_0 = \hat{k} \in K^\perp. \]
(14)

Finally, if we define the operator

\[L = \frac{\partial}{\partial t} - \Delta + D(Id)y_0 \]

whose adjoint is

\[L^* = -\frac{\partial}{\partial t} - \Delta + D(Id)y_0, \]

here, \(D(Id)y_0 \) is the linear operator defined as:

\[D(Id)y_0 : q \mapsto -\nabla q y_0 = (\nabla q + \nabla q^t)y_0, \]

it is well known that for \(h \) and \(k \) fixed respectively in \(L^2(Q)^N \) and \(L^2(\omega T)^N \) the backward problem

\[\begin{cases}
L^*q + \nabla \pi = h + k\chi_{\omega T} & \text{in } Q, \\
\text{div } q = 0 & \text{in } Q \\
q = 0 & \text{on } \Sigma, \\
q(T) = 0 & \text{in } \Omega
\end{cases} \]
(15)

has a unique solution \(q(k) \in (L^2(Q))^N \) defined by transposition in the following sense

\[\int_Q q(k)L\Psi \, dx \, dt = -\int_Q (h + k\chi_{\omega T})\Psi \, dx \, dt, \]

\(\forall \Psi \) such that \(\text{div } \Psi = 0 \) in \(Q \), \(\Psi|_\Sigma = 0 \) and \(\Psi(x, 0) = 0 \) in \(\Omega \).

Consequently, the problem which consists in searching for a control \(\hat{w} \) satisfying (5)-(7) is equivalent to look for \(\hat{k} \) such that \((\hat{k}, \hat{q}) \in K^\perp \times L^2(0, T; L^2(\Omega)^N) \) is solution of the null-controllability problem subject to constraints.

\[\begin{cases}
L^*q + \nabla \pi = h_0\chi_{\Omega T} + k_0\chi_{\omega T} + \hat{k}\chi_{\omega T} & \text{in } Q, \\
q(T) = 0 & \text{on } \Omega \\
q = 0 & \text{on } \Sigma \\
q(0) = 0 & \text{on } \Omega
\end{cases} \]
(16)

and

\[\frac{1}{2}|\hat{k}|_{L^2(\omega T)} = \min_{k \in \mathcal{E}} \frac{1}{2}|k|_{L^2(\omega T)}, \]

(17)

where

\[\mathcal{E} = \{ k \in L^2(\omega T); k \in K^\perp, \, q(k)(\cdot, 0) = 0 \, \text{ in } \Omega \}. \]
(18)

Then, solving (16) amounts in searching \(\{\hat{k}, \hat{q}, \hat{\pi}\} \) with

\[\hat{k} \in K^\perp, \, \hat{q} = q(\hat{k}), \, \hat{\pi} = \pi(\hat{k}) \]
(19)

and

\[\hat{q}(x, 0) = 0 \, \text{ in } \Omega. \]
(20)

Furthermore, \(\hat{k} \) requires the condition (17)-(18).
Remark 0.4. Property (19) defines the set of constraints on \(k \). Hence, problem (15)-(20) and (16) is a null-controllability type problem with constraints. When \(K = (L^2(\omega_T))^N \), we notice that we have again a null-controllability problem without constraints on the control.

0.3. Related studies

During the nineties, the controllability for Navier-Stokes equations are intensively studied. Without constraints on the control, that means when \(K = (L^2(\omega_T))^N \), it is now well known that Navier-Stokes equations locally null controllable (see, for instance \([5],[6],[9],[10],[11],[12],[19]\)). The main existence results of a local control are based essentially on Carleman and observability inequalities.

In \([15]\), using the Hilbert Uniqueness Method (H.U.M) introduced in \([14]\), the author deals with (2) when \(K \) is not \((L^2(\omega_T))^N \), therefore the functions \(h \) and \(\hat{w} \) have the same support, that is \(\mathcal{O} = \omega \).

More recently, for heat equation, seen in \([20]\), the author uses an adapted Carleman inequality deriving global Carleman inequality and prove explicitly the existence of a constrained control when \(K \neq (L^2(\omega_T))^N \) and \(\omega \subset \mathcal{O} \) strictly instead of considering the situation \(\mathcal{O} = \omega \). In this study, the author revisits the results obtained in \([15]\).

In our paper, we deal with (15)-(20) and (16) when \(k \) and \(h \) do not have necessary the same support and \(K \) is not \((L^2(\omega_T))^N \).

To present our results, we divide the study in four sections.

The first section is devoted to introduce the problem.

The second section deals with a general boundary null-controllability problem with constraints on the control. To do so, employing a Carleman Inequality for linear Navier-Stokes equations due to \([9]\), we establish an Adapted Observability Inequality for Navier-Stokes problem with constraints.

The third section consists in giving a suitable characterization of the control obtained in the previous section.

In the last section, we show how results obtained in previous sections on null-controllability problem with constraints can be applied to formulate the corresponding sentinel.

0.4. Notations and Assumptions

0.4.1. Notations

Throughout this paper, we adopt some notations and conventions.

We consider the sets:

\[
\mathcal{V} = \left\{ (\rho, \pi) \in \left(C^\infty(\bar{Q}) \right)^N \times C^1(\bar{Q}); \text{ div}\rho = 0 \text{ on } Q, \int_{\omega_T} \pi dx \, dt = 0 \text{ and } \rho = 0 \text{ on } \Sigma \right\}.
\]

and

\[
\mathcal{V}_0 = \left\{ (\rho, 0); \rho \in \left(C^\infty(\bar{Q}) \right)^N ; \text{ div}\rho = 0 \text{ on } Q, \text{ and } \rho = 0 \text{ on } \Sigma \right\}.
\]

We design by \(P \) the orthogonal projection operator from \(L^2(\omega_T) \) to \(K \). For any \(\rho \in \mathcal{V} \), we shall denote by \(P\rho\chi_{\omega_T} \) the projection into \(K \) of \(\rho\chi_{\omega_T} \in L^2(\omega_T) \).

0.4.2. Assumptions

In this paper we assume the following hypotheses:

\[
\begin{cases}
\text{It does not exist any element } (\rho, \pi) \neq (0, 0) \text{ such that } \\
L \rho + \nabla \pi = 0 \text{ in } \omega_T \\
\rho \in K
\end{cases}
\]

(21)

Remark 0.5. Assumption (21) seems natural (for instance, see \([15]\) where similar hypothesis has been make).
A geometrical assumption
\[\omega \subset \Omega. \]

(22)

0.5. Main results

Our main results are summarized in the following theorems

Theorem 0.6. Assume (21). \(h \in L^2(O) \) is a given function. There exists a system \(\{ \hat{k}, \hat{q}, \hat{\pi} \} \) satisfying (16)-(18).

Theorem 0.7. The system \(\{ \hat{k}, \hat{q}, \hat{\pi} \} \) is defined as

\[\hat{k} = P \hat{\rho} \chi_\omega T - \hat{\rho} \chi_\omega T \in K^\perp \]

where

\[\begin{cases}
L \hat{\rho} = 0 & \text{in } Q \\
\text{div} \hat{\rho} = 0 & \text{in } Q \\
\hat{\rho} = 0 & \text{on } \Sigma.
\end{cases} \]

(24)

\[\begin{cases}
L^* \hat{q} + \nabla \hat{\pi} = h + \hat{k} \chi_\omega & \text{in } Q \\
\text{div} \hat{q} = 0 & \text{in } Q \\
\hat{q} = 0 & \text{on } \Sigma \\
\hat{q}(T) = 0 & \text{in } \Omega \\
\hat{q}(0) = 0 & \text{in } \Omega.
\end{cases} \]

(25)

A direct application to the theory of sentinel is made and we have:

Theorem 0.8. Let \(\Omega \) be a bounded open set of class \(C^2 \) with a sufficiently smooth boundary \(\Gamma \). Let \(\omega \) a open subset of \(\Omega \). \((\zeta, \hat{\zeta}) \) and \((y^0, \hat{y}^0) \) belong in \(((L^2(Q))^N)^2 \) and \(((L^2(\Omega))^N)^2 \) respectively. Assume \(\omega \subset O \). Let \(y \) be the unique solution of (2).

There exists a control \(\hat{w} \in L^2(\omega_T) \) such that the function \(\hat{S} \) defined as

\[\hat{S}(\lambda, \tau; \hat{w}) = \int_0^T \int_\Omega h_0 y(x, \lambda, \tau) dx dt + \int_0^T \int_\omega \hat{w} y(x, \lambda, \tau) dx dt \]

is a Sentinel in the sense of Definition 0.1.

Moreover, let \(\hat{q}(h_0) \) be the unique solution of (25) depending of \(h_0 \), \(m_0 \) and \(y_0 \) are defined as in (3) and (8) respectively, the pollution term is identified as follows:

\[\int_0^T \int_\Omega \hat{q}(h_0)(\lambda \xi) dx dt = \int_0^T \int_\Omega (h_0 \chi_\Omega + \hat{w} \chi_\omega)(m_0 - y_0) dx dt. \]

1. Proof of Theorem 0.6. Existence of a control

1.1. An adapted Observability Inequality

In this paper, the main tool used consists in an adapted inequality observability. Before presenting it, in a Lemma, we need to recall a global Carleman inequality obtained by [9] for the following linear Navier-Stokes system

\[\begin{cases}
- \frac{\partial \phi}{\partial t} - \Delta \phi - D \phi \overline{y} + \nabla \pi = g & \text{in } Q, \\
\text{div} \phi = 0 & \text{in } Q, \\
\phi = 0 & \text{on } \Sigma, \\
\phi(T) = \phi^0 & \text{on } \Omega.
\end{cases} \]

(26)
where \bar{y} is the solution of the uncontrolled Navier-stokes system

$$
\begin{cases}
\frac{\partial \bar{y}}{\partial t} - \Delta \bar{y} + \nabla \cdot (\bar{y} \otimes \bar{y}) + \nabla \bar{p} = 0 \quad \text{in } Q, \\
\nu \bar{y} = 0 \quad \text{in } Q, \\
\bar{y} = 0 \quad \text{on } \Sigma, \\
\bar{y}(0) = \bar{y}^0 \quad \text{in } \Omega.
\end{cases}
$$

(27)

Lemma 1.1. Let us suppose that $\bar{y} \in (L^\infty(Q))^N$, $\frac{\partial \bar{y}}{\partial t} \in (L^2(0,T;L^\sigma(\Omega)))^N$, $\sigma > 6/5$ if $N = 3$, $\sigma > 1$ if $N = 2$ hold. Then, there exist three positive constants \hat{s}, \hat{D}, C depending on Ω and ω such that, for every $\phi^0 \in \{ y \in (L^2(\Omega))^N; \nabla.y = 0 \text{ in } \Omega, y.n = 0 \text{ on } \partial\Omega\}$ and $g \in (L^2(Q))^N$, the corresponding solution to (26) verifies:

$$
s^3D^4 \int_Q e^{-2s\alpha} |\xi|^2 |\phi|^2 dxdt + sD^2 \int_Q e^{-2s\alpha} |\nabla \phi|^2 dxdt \\
+ s^{-1} \int_Q e^{-2s\alpha} \xi^{-1} (|\phi_1|^2 + |\Delta \phi|^2) dxdt \\
\leq C (1 + T^2) \left(s^{15/2}D^{20} \int_Q e^{-4s\hat{\alpha} + 2s\alpha^*} \xi^{15/2} |g|^2 dxdt \\
+ s^{16}D^{40} \int_{\omega_T} e^{-8s\hat{\alpha} + 6s\alpha^*} \xi^{16} |\phi|^2 dxdt \right),
$$

for all $D \geq \hat{D} \left(1 + \|\bar{y}\|_\infty + \|\bar{y}\|_{L^2(0,T;L^\sigma(\Omega))}^2 + \epsilon^2 D T \|\bar{y}\|_\infty \right)$ and $s \geq \hat{s} (T^4 + T^8)$ and appropriate positive weight functions $\alpha, \xi, \hat{\alpha}, \alpha^*, \hat{\xi}$.

Proof. (See [9])

The next Lemma is devoted to an Adapted Observability Inequality:

Lemma 1.2. There exists a constant $C > 0$ depending on Ω, ω_0, T such that for every $(\rho, \pi) \in \mathcal{V}$

$$
\int_\Omega \frac{1}{\Theta} |\rho|^2 dxdt \leq C \left[\int_Q |L\rho + \nabla \pi|^2 dxdt + \int_{\omega_T} |\rho \chi_{\omega_T} - P\rho \chi_{\omega_T}|^2 dxdt \right]
$$

(28)

where $\Theta = s^3D^4e^{-2s\alpha}\xi^3$.

Before starting the proof, let us notice the following remark

Remark 1.3. We can observe that Lemma 1.2 remains valid on \mathcal{V}_0 defined as in the beginning of this section.

Proof. Proof of Lemma 1.2

We argue by opposite. Let n be an integer, suppose there exists a sequence (ρ_n, π_n) such that

$$
\int_Q |L\rho_n + \nabla \pi_n|^2 dxdt + \int_{\omega_T} |\rho_n \chi_{\omega_T} - P\rho_n \chi_{\omega_T}|^2 dxdt < \frac{1}{n} \int_\Omega \frac{1}{\Theta} |\rho_n|^2 dxdt.
$$

(29)

We show that the sequences ρ_n and π_n are bounded. Let us denote again by ρ_n and π_n, the extracted subsequences, we establish their convergence. Hence, we show that a contradiction occurs.

To do so, the proof is divided in two steps.

Step 1
1.1.1. \(\rho_n \) and estimates

We can assume \(\int_Q \frac{1}{\Theta} |\rho_n|^2 dx dt = 1 \). Then, we deduce

\[
\int_Q |L\rho_n + \nabla \pi_n|^2 dx dt \longrightarrow 0,
\]

and

\[
\int_{\omega_T} |\rho_n \chi_{\omega_T} - P\rho_n \chi_{\omega_T}|^2 dx dt \longrightarrow 0.
\]

Before continuing, notice that we can write

\[
\frac{1}{\Theta} P\rho_n = \frac{1}{\Theta} (P\rho_n \chi_{\omega_T} - \rho_n \chi_{\omega_T}) + \frac{1}{\Theta} \rho_n.
\]

Since we have \(\int_Q \frac{1}{\Theta} |\rho_n|^2 dx dt = 1 \), \(\frac{1}{\Theta} \) being bounded in \(Q \), using (31) there exists a constant \(K > 0 \) such that

\[
\int_{\omega_T} |P\rho_n|^2 dx dt \leq K.
\]

We can observe that \(N_1 : k \mapsto \int_{\omega_T} |k|^2 dx dt \) and \(N_2 : k \mapsto \int_{\omega_T} \frac{1}{\Theta^2} |k|^2 dx dt \) define two norms in \(K \). Since \(K \) is a finite dimensional vector space, \(N_1 \) and \(N_2 \) are equivalent norms. Consequently, doing \(k = P\rho_n \), it follows \(\int_{\omega_T} |P\rho_n|^2 dx dt \leq K \). Hence, since the Pythagorean identity, \(\|\rho_n \chi_{\omega_T}\|^2_{\omega_T} = \|\rho_n \chi_{\omega_T} - P\rho_n \chi_{\omega_T}\|^2_{\omega_T} + \|P\rho_n \chi_{\omega_T}\|^2_{\omega_T} \) we also have

\[
\int_{\omega_T} |\rho_n \chi_{\omega_T}|^2 dx dt \leq K.
\]

1.1.2. \(\rho_n \) and convergence

From (32), we can extract a subsequence denoted again \(\rho_n \) and so we can consider that \(\rho_n \chi_{\omega_T} \) converges weakly in \((L^2(\omega_T))^N \). There exists \(\varphi \in (L^2(\omega_T))^N \) such that

\[
\rho_n \chi_{\omega_T} \rightharpoonup \varphi \quad \text{in} \quad (L^2(\omega_T))^N.
\]

From compactness properties of operator \(P \), it results that

\[
P\rho_n \chi_{\omega_T} \rightharpoonup P\varphi \quad \text{in} \quad (L^2(\omega_T))^N.
\]

Moreover, combining (31), (33) and (34), we have \(\varphi = P\varphi \), and

\[
\rho_n \chi_{\omega_T} - \varphi \longrightarrow 0 \quad \text{in} \quad (L^2(\omega_T))^N
\]

and that means

\[
\varphi \in K.
\]

We can deduce that \(\rho_n \chi_{\omega_T} \longrightarrow \varphi \) in \((\mathcal{D}'(\omega_T))^N \) and so

\[
L\rho_n \chi_{\omega_T} \longrightarrow L\varphi \quad \text{in} \quad (\mathcal{D}'(\omega_t))^N.
\]

Step 2 \(\pi_n \) some estimates and convergence.
1.1.3. \(\pi_n \) and estimates

Before starting, we must notice that (30) implies that there exists \(\varepsilon_n \in (L^2(Q))^N \) with \(\| \varepsilon_n \|_{L^2(Q)} \to 0 \) such that

\[
\begin{cases}
L \rho_n + \nabla \pi_n = \varepsilon_n & \text{in } Q, \\
\rho_n = 0 & \text{on } \Sigma, \\
\text{div} \rho_n = 0 & \text{in } Q, \\
\rho_n(0) = 0 & \text{in } \Omega.
\end{cases}
\] (38)

Inspired by ideas of [9], we introduce the sequences

\[
\rho_n^* = s^{1/4} e^{-s \alpha^* (\xi^*)^{1/4}} \rho_n, \\
\pi_n^* = s^{1/4} e^{-s \alpha^* (\xi^*)^{1/4}} \pi_n, \\
g_n^* = s^{1/4} e^{-s \alpha^* (\xi^*)^{1/4}} \varepsilon_n^2 + s^{1/4} e^{-s \alpha^* (\xi^*)^{1/4}} D \rho_n \mathcal{I} - s^{1/4} (e^{-s \alpha^* (\xi^*)^{1/4}}) \rho_n.
\]

Then, the system (38) becomes a Stokes system

\[
\begin{cases}
\frac{\partial \rho_n^*}{\partial t} - \Delta \rho_n^* + \nabla \pi_n^* = g_n^* & \text{in } Q, \\
\rho_n^* = 0 & \text{on } \Sigma, \\
\text{div} \rho_n^* = 0 & \text{in } Q, \\
\rho_n^*(0) = 0 & \text{in } \Omega.
\end{cases}
\] (39)

Thus, obviously we have \(\rho_n^* \in L^2(O, T; H^2(\Omega)^N \cap H_0^1(\Omega)^N) \cap L^\infty(O, T; H_0^1(\Omega)^N) \) and \(\pi_n^* \in L^2(O, T; H^1(\Omega)) \) by the use of the regularity properties of evolutive Stokes equation (see for instance [22]). Furthermore there exists a positive constant \(C \) such that

\[
\int_Q (|\pi_n^*|^2 + |\nabla \pi_n^*|^2) \, dx \, dt \leq C \int_Q |g_n^*|^2 \, dx \, dt.
\] (40)

However,

\[
\int_Q |g_n^*|^2 \, dx \, dt \leq C s^{1/2} \left[\int_Q e^{-2s \alpha^* (\xi^*)^{1/4}} |\varepsilon_n|^2 \, dx \, dt + \int_Q \| \mathcal{I} \|_\infty^2 e^{-2s \alpha^* (\xi^*)^{1/4}} |\nabla \rho_n|^2 \, dx \, dt \right. \\
+ \left. \int_Q \| e^{-s \alpha^* (\xi^*)^{1/4}} \|_1^2 |\rho_n|^2 \, dx \, dt \right].
\]

Remembering that \(\alpha^* (t) = \left(e^{5/4 \lambda m t} - e^{\lambda m t} \right) / t^4 (T - t)^4 \), and

\(\xi^* = e^{\lambda m t} / t^4 (T - t)^4 \), we observe that \(e^{-2s \alpha^*} \) tends more rapidly to 0 than \(t^4 (T - t)^4 \) when \(t \to 0 \) or \(t \to T \).

Consequently, we obtain

\[
\int_Q s^{1/2} e^{-2s \alpha^* (\xi^*)^{1/4}} |\pi_n|^2 \, dx \, dt \leq \int_Q |\varepsilon_n|^2 \, dx \, dt + sD^2 \int_Q e^{-2s \alpha^* (\xi^*)^{1/4}} |\nabla \rho_n|^2 \, dx \, dt \\
+ s^3 D^4 \int_Q e^{-2s \alpha^* (\xi^*)^{1/4}} |\rho_n|^2 \, dx \, dt.
\] (41)

However, on other hand, we observe that in the right hand of Carleman Inequality given in Theorem 1 [9], the weight functions \(e^{-4s \alpha^* + 2s \alpha^* \xi^*^{15/2}} \) and \(e^{-8s \alpha^* + 6s \alpha^* \xi^*^{16}} \) are bounded uniformly on \(Q \) and \(\omega_T \) respectively. Indeed, from definitions of \(\bar{\alpha}, \alpha^* \), easy computation shows that

\[
-4\bar{\alpha} + 2\alpha^* = -e^{5/4mD} + 2e^{(m+1)D} - e^{mD} \quad \text{and} \quad -8\bar{\alpha} + 6\alpha^* = -2e^{5/4mD} + 8e^{(m+1)D} - 6e^{mD}.
\]
Since \(m \) is such that \(m > 4 \), then for \(D \) sufficiently large, \(-4\hat{\alpha} + 2\alpha^*\) and \(-8\hat{\alpha} + 6\alpha^*\) can be substituted by \(-5/4mD\) and \(-2e^{5/4mD}\). Consequently, the weight functions \(e^{-4s\hat{\alpha} + 2s\alpha^*}\xi^{15/2}_s\) and \(e^{-8s\hat{\alpha} + 6s\alpha^*}\xi^{16}_s\) can be estimated respectively by
\[
e^{-5c(5/4mD)/t^4(T-t)^4} 1 \quad \text{and} \quad e^{-2sc(5/4mD)/t^4(T-t)^4} 1 \quad \text{for} \quad t^4(T-t)^4.
\]
We observe that when \(t \) tends to 0 or \(T \), then \(e^{-5c(5/4m\lambda)/t^4(T-t)^4} \) and \(e^{-2sc(5/4m\lambda)/t^4(T-t)^4} \) tend more rapidly to 0 than \(t^4(T-t)^4 \).

It results
\[
s^3D^4 \int_Q e^{-2s\alpha} \xi^3|\rho_n|^2 dxdt + sD^2 \int_Q e^{-2s\alpha} \xi|\nabla \rho_n|^2 dxdt \leq C \left(\int_Q |\xi_n|^2 dxdt + \int_{\omega_T} |\rho_n|^2 dxdt \right). \tag{42}
\]

Combining (41) and (42), we have
\[
\int_Q s^{1/2} e^{-2s\alpha^*(\xi)} |\nabla \pi_n|^2 dxdt \leq C \left(\int_Q |\xi_n|^2 dxdt + \int_{\omega_T} |\rho_n|^2 dxdt \right). \tag{43}
\]

Since (40) we have
\[
\int_Q |\nabla \pi_n|^2 dxdt \leq \int_Q |g_n^e|^2 dxdt, \tag{44}
\]

after adding (43) and (40), we get
\[
\int_Q |\pi_n|^2 dxdt + \int_Q |\nabla \pi_n|^2 dxdt \leq C \left(\int_Q |\xi_n|^2 dxdt + \int_{\omega_T} |\rho_n|^2 dxdt \right) \leq C \left(\int_Q |\rho_n + \nabla \pi_n|^2 dxdt + \int_{\omega_T} |\rho_n|^2 dxdt \right).
\]

1.1.4. \(\pi_n \) and convergence

We have assumed (29), then we deduce that \(\pi_n^* \) is bounded in \(L^2([0,T] \times H^1(\Omega)) \). We can extract a subsequence denoted again \(\pi_n^* \) converging weakly in \(L^2([0,T] \times H^1(\Omega)) \). Let \(\pi^* \) in \(L^2([0,T] \times H^1(\Omega)) \) such that \(\pi_n^* \rightharpoonup \pi^* \) in \(L^2([0,T] \times H^1(\Omega)) \) then, \(\pi^* \rightharpoonup \pi^* \) in \(L^2(Q) \) and \(\nabla \pi_n^* \rightharpoonup \nabla \pi^* \) in \((L^2(Q))^N \).

Setting \(\pi = s^{-1/4} e^{-\alpha^*(\xi^*)}^{-1/4} \pi^* \), we deduce that \(\nabla \pi_n \rightharpoonup \nabla \pi \) in \((L^2(Q))^N \), it also results that \(\nabla \pi_n \rightharpoonup \nabla \pi \) in \((L^2(\omega_T))^N \).

Using (37), we conclude that
\[
L\rho_n \chi_{\omega_T} + \nabla \pi_n \rightharpoonup L\varphi + \nabla \pi \text{ in } (L^2(\omega_T))^N.
\]

Then, from (30), we deduce that
\[
L\varphi + \nabla \pi = 0 \quad \text{in} \quad \omega_T. \tag{45}
\]

From hypothesis (21), we conclude that \(\varphi \equiv 0 \) in \(\omega_T \). So, from (35), it comes \(\rho_n \rightharpoonup 0 \) in \((L^2(\omega_T))^N \). Thanks to (30) and Theorem 1 [9], we have \(\int_Q e^{-2s\alpha} \xi^3 |\rho_n|^2 dxdt \rightarrow 0 \). Assuming \(\int_Q e^{-2s\alpha} \xi^3 |\rho_n|^2 dxdt = 1 \), a contradiction occurs. Lemma 1.2 is proved. \(\square \)

1.2. Existence of the best control.

Let \((\rho, \pi, \overline{\rho}, \overline{\pi}) \) be in \(V \), we define
\[
a((\rho, \pi), (\overline{\rho}, \overline{\pi})) = \int_Q (L\rho + \nabla \pi)(L\overline{\rho} + \nabla \overline{\pi}) dxdt + \int_{\omega_T} (\rho - P\rho)(\overline{\rho} - P\overline{\rho}) dxdt. \tag{46}
\]
Lemma 1.4. The application $V \rightarrow \mathbb{R}_+$
$(\rho, \pi) \mapsto \sqrt{a((\rho, \pi), (\rho, \pi))}$ is a norm.

Proof. Particularly, we observe that $a((\rho, \pi), (\rho, \pi)) = 0$ implies simultaneously that $\int_Q |L\rho + \nabla\pi|^2 \, dx dt = 0$ and $\int_{\omega_T} |\rho\chi_{\omega_T} - P\rho\chi_{\omega_T}|^2 \, dx dt = 0$. That means, more precisely

$$
\left\{ \begin{array}{l}
L\rho\chi_{\omega_T} + \nabla\pi = 0 \quad \text{in} \ \omega_T \\
\rho\chi_{\omega_T} \in K.
\end{array} \right.
$$

(47)

From hypothesis (21), (47) is valid if and only if $\rho = 0$ in ω_T. Using Lemma 1.2 or Theorem 1 [9], we deduce $\rho = 0$ in Q. Introducing again the functions $\rho^* = s^{1/4}e^{-s\alpha^*}\xi^{1/4}\rho$, $\pi^* = s^{1/4}e^{-s\alpha^*}\xi^{1/4}\pi$, we have

$$
\int_Q (|\pi^*|^2 + |\nabla\pi^*|^2) \, dx dt \leq C \int_Q |g^*|^2 \, dx dt, \quad \text{where} \quad g^* = s^{1/4}e^{-s\alpha^*}(\xi^*)^{1/4}D\rho\bar{\pi} - s^{1/4}(e^{-s\alpha^*}(\xi^*)^{1/4})_t \rho \quad \text{in} \ Q.
$$

Consequently, we obtain then $\pi^* = 0$ and $\nabla\pi^* = 0$ in Q. We get $\pi = 0$ in Q. □

Remark 1.5. From Remark 1.3, consider

$$
a_0((\rho, 0), (\bar{\rho}, 0)) = \int_Q L\rho L\bar{\pi} \, dx dt + \int_{\omega_T} (\rho - P\rho)(\bar{\rho} - P\bar{\rho}) \, dx dt
$$

the bilinear form on $V_0 \times V_0$. Obviously, $(\rho, 0) \mapsto a_0((\rho, 0), (\rho, 0))$ defines a norm designated as $\| \cdot \|_{\Theta, 0}$. We can define by V_0 the completion of V_0 with respect to the norm $\| \cdot \|_{\Theta, 0}$.

Consider the completed space V of \mathcal{V} with respect to the norm $\| (\rho, \pi) \|_{\Theta}^2 = a((\rho, \pi), (\rho, \pi))$. Θ is as in Lemma 1, let h be given in $(L^2(Q))^N$ such that Θh belongs in $(L^2(Q))^N$, then we claim that $(\bar{\rho}, \bar{\pi}) \mapsto \int_Q h\bar{\pi} \, dx dt$ is continuous from V to \mathbb{R}. Indeed, we have $\left| \int_Q h\bar{\pi} \, dx dt \right| \leq \| h\Theta \|_{L^2(Q)} \left\| \frac{1}{\Theta} \right\|_{L^2(Q)} \cdot$ Employing Lemma 1.2 and definition of $\| (\bar{\rho}, \bar{\pi}) \|_{\Theta}$, the result announced is obvious. Lax-Milgram Lemma can be applied, there exists $(\rho_\Theta, \pi_\Theta)$ in V such that

$$
a((\rho_\Theta, \pi_\Theta), (\bar{\rho}, \bar{\pi})) = \int_Q h\bar{\pi} \, dx dt, \quad \forall (\bar{\rho}, \bar{\pi}) \in V.
$$

(48)

1.2.1. Construction of (g, π, k) satisfying (15) and (19)

Proposition 1.6. Let Θ be the function defined as in Lemma 1.2. Let $(\rho_\Theta, \pi_\Theta) \in V$ be the unique solution of (48). Assume h is a function such that Θh belongs in $L^2(Q)$. Then there exists a system $(k_\Theta, q_\Theta, \pi_\Theta)$ satisfying to (16).

Proof. From (48), for any $(\bar{\rho}, \bar{\pi}) \in V$

$$
\int_Q (L\rho_\Theta + \nabla\pi_\Theta) (L\bar{\rho} + \nabla\bar{\pi}) \, dx dt + \int_{\omega_T} (\rho_\Theta - P\rho_\Theta)(\bar{\rho} - P\bar{\rho}) \, dx dt = \int_Q h\bar{\pi} \, dx dt.
$$

(49)

Hence, taking $\bar{\pi} = 0$, we obtain:

$$
\int_Q (L\rho_\Theta + \nabla\pi_\Theta) L\bar{\pi} \, dx dt + \int_{\omega_T} (\rho_\Theta - P\rho_\Theta) \bar{\pi} \, dx dt = \int_Q h\bar{\pi} \, dx dt, \quad \forall (\bar{\rho}, \bar{\pi}) \in V_0.
$$

We set $q_\Theta = L\rho_\Theta + \nabla\pi_\Theta$, we can write

$$
\int_Q q_\Theta L\bar{\pi} \, dx dt = \int_Q [h - (\rho_\Theta\chi_{\omega_T} - P\rho_\Theta\chi_{\omega_T})\chi_{\omega_T}] \bar{\pi} \, dx dt, \quad \forall (\bar{\rho}, \bar{\pi}) \in V_0.
$$

(50)
However, let ρ be in $(C^\infty(Q))^N$, after integrating by part over Q, we have

$$\int_Q q^* L^q \rho dx dt = \left(q^*_0(0), \rho(0) \right)_{L^2(\Omega)} - \left(q^*_T(0), \rho(T) \right)_{L^2(\Omega)} + \int_Q L^* q^* \rho dx dt + \int_{\Sigma} q^*_0 \frac{\partial \rho}{\partial \nu} d\sigma - \int_{\Sigma} q^*_T \frac{\partial \rho}{\partial \nu} d\sigma.$$ \hspace{1cm} (51)

We choose $\varphi \in (C^\infty(Q))^N$ such that $div \varphi = 0$ in Q. From (50) and (51) it results

$$\int_Q \{ L^* q^*_0 - [h - (\rho_\Theta \chi_{\omega_T} - P_\Theta \rho_\Theta \chi_{\omega_T}) 1_{\omega_T}] \} \varphi dx dt = 0.$$ \hspace{1cm} (52)

$L^* q^*_f - [h - (\rho_\Theta \chi_{\omega_T} - P_\Theta \rho_\Theta \chi_{\omega_T}) \chi_{\omega_T}]$ belongs in $L^2(Q)$, then there exists a pair (q^*_0, π^*_0) such that $L^* q^*_0 + \nabla \pi^*_0 = L^* q^*_f - [h - (\rho_\Theta \chi_{\omega_T} - P_\Theta \rho_\Theta \chi_{\omega_T}) \chi_{\omega_T}]$, in particular, we have $div q^*_0 = 0$ in Q, $q^*_0 = 0$ on Σ and $\nabla \pi^*_0 \in L^2(Q)$.

Multiplying by φ, after integrating over Q, we have $\int_Q (L^* q^*_0 + \nabla \pi^*_0) \varphi dx dt = 0$. Since, we have $div \varphi = 0$ in Q, it follows that $\int_Q L^* q^*_0 \varphi dx dt = 0$ and so we get $L^* q^*_0 = 0$ in Q.

Setting $\pi_{h, \Theta} = - \pi^*_0$, we deduce that there exists $\pi_{h, \Theta}$ such that

$$L^* q^*_0 + \nabla \pi_{h, \Theta} = h - (\rho_\Theta \chi_{\omega_T} - P_\Theta \rho_\Theta \chi_{\omega_T}) \chi_{\omega_T}, \text{ in } Q.$$ \hspace{1cm} (53)

Now, we take $\varphi \in C^\infty(\overline{Q})$, such that $\varphi(0) = \varphi(T) = 0$, combining (52) and doing successively $\varphi(0) = \varphi(T) = 0$ firstly, we obtain $q^*_0 = 0$ on Σ when $\varphi = 0$ on Σ and secondly, $\frac{\partial q^*_0}{\partial \nu} = 0$ on Σ when $\frac{\partial \varphi}{\partial \nu} = 0$. Using Lions-Magenes arguments [16], we can define $q^*_0(0)$ and $q^*_0(T)$. Taking $\overline{\varphi}(0) = 0$ respectively $\overline{\varphi}(T) = 0$, we get $q^*_0(0) = 0$ and $q^*_0(T) = 0$ in Ω.

We show that $\nabla q^*_0 = 0$ in \mathcal{O}_T. To prove it, we set $k_\Theta = -(\rho_\Theta \chi_{\omega_T} - P_\Theta \rho_\Theta \chi_{\omega_T})$ and we consider the unique weak solution $(\tilde{q}, \tilde{\pi})$ of linear Navier-Stokes problem

$$\begin{cases} L^* \tilde{q} + \nabla \tilde{\pi} &= h + k_\Theta \chi_{\omega_T} \text{ in } Q, \\ div \tilde{q} &= 0 \text{ in } Q, \\ \tilde{q} &= 0 \text{ on } \Sigma, \\ \tilde{q}(T) &= 0 \text{ on } \Omega. \end{cases}$$

It is obvious to notice that $\tilde{q} \in (L^2(Q))^N$ is the unique solution via transposition process in the following sense: for any $\psi \in (L^2(Q))^N$,

$$\int_Q \tilde{q} \psi dx dt = \int_Q (h + k_\Theta \chi_{\omega_T}) \rho_\psi dx dt,$$ \hspace{1cm} (54)

where (ρ_ψ, π_ψ) is the unique solution of the backward linear Navier-Stokes problem

$$\begin{cases} L\rho_\psi + \nabla \pi_\psi &= \psi \text{ in } Q, \\ div \rho_\psi &= 0 \text{ in } Q, \\ \rho_\psi &= 0 \text{ on } \Sigma, \\ \rho_\psi(0) &= 0 \text{ on } \Omega. \end{cases}$$
We observe that \((\nabla \tilde{\pi}, \rho \psi)_{L^2(Q)} = 0\). Indeed,
\[
(\nabla \tilde{\pi}, \rho \psi)_{L^2(Q)} = \sum_{i=1}^{N} \int_{Q} \frac{\partial \tilde{\pi}}{\partial x_i} \rho \psi_i dx dt - \int_{Q} \tilde{\pi} \rho \psi dx dt = \sum_{i=1}^{N} \int_{Q} \frac{\partial \psi_i}{\partial x_i} \tilde{\pi} \rho dx dt - \int_{\Sigma} \tilde{\pi} \rho \sigma dt = 0.
\]
However, on other hand, since we have
\[
\int_{Q} q_{\Theta} \psi dx dt = \int_{Q} q_{\Theta} (L \rho + \nabla \pi) dx dt = \int_{Q} (L \rho_{\Theta} + \nabla \pi_{\Theta}) (L \rho + \nabla \pi_{\Theta}) dx dt,
\]
putting \(\tilde{\rho} = \rho_{\Theta}\) and \(\tilde{\pi} = \pi_{\Theta}\) in (49), we also conclude that
\[
\int_{Q} q_{\Theta} \psi dx dt = \int_{Q} (h + k_{\Theta} \chi_{\omega_T}) \rho_{\Theta} dx dt.
\]
The uniqueness argument implies that \(q_{\Theta} = \tilde{q}\) in \(Q\). So, we get by particulary, \(\text{div} q_{\Theta} = \text{div} \tilde{q} = 0\).

We have proved that there exists a control \(k_{\Theta} \in \mathcal{K}\), \(k_{\Theta} = P \rho_{\Theta} \chi_{\omega_T} - \rho_{\Theta} \chi_{\omega_T}\) such that \(q(k_{\Theta}) = q_{\Theta}\) verifies
\[
\begin{align*}
L^* q + \nabla \pi_{\Theta} &= h + k_{\Theta} \chi_{\omega_T} \quad \text{in} \quad Q, \\
\text{div} q_{\Theta} &= 0 \quad \text{in} \quad Q, \\
q_{\Theta} &= 0 \quad \text{on} \quad \Sigma, \\
q_{\Theta}(0) = q_{\Theta}(T) &= 0 \quad \text{on} \quad \Omega.
\end{align*}
\]
\(\square\)

1.2.2. **Existence of \(\hat{k}\)**

\(\mathcal{E}\) being as in (18), the previous section shows that \(\mathcal{E}\) is non-empty. Moreover, \(\mathcal{E}\) is convex and closed in \(L^2(\omega_T)\). Consequently, the optimal problem \(\min_{k \in \mathcal{E}} \frac{1}{2} ||k||_{L^2(\omega_T)}^2\) admits a unique solution in \(\mathcal{E}\) and so let us denote \(\hat{k}\) its corresponding solution, \(k\) is unique. According to the structure of the set \(\mathcal{E}\), there exists a pair \((\hat{q}, \tilde{\pi})\) such that
\[
\begin{align*}
L^* \hat{q} + \nabla \tilde{\pi} &= h + \hat{k} \chi_{\omega_T} \quad \text{in} \quad Q, \\
\text{div} \hat{q} &= 0 \quad \text{in} \quad Q, \\
\hat{q} &= 0 \quad \text{on} \quad \Sigma, \\
\hat{q}(0) = \hat{q}(T) &= 0 \quad \text{on} \quad \Omega.
\end{align*}
\]
\(\square\)

Now, we are interested in showing that there exists \(\hat{\rho}\) such that \(\hat{k} = P \hat{\rho} \chi_{\omega_T} - \hat{\rho} \chi_{\omega_T}\). We deal with this point in the next section.

2. **Proof of Theorem 0.7. A Characterization of \(\hat{k}\) via an Optimal System**

In order to characterize \(\hat{k}\), we define the sets
\[
Q = \left\{ q; \ L^* q \in (L^2(Q))^N, \ \nabla q = 0, q(T) = 0, q(0) = 0 \right\},
\]
\[P = \{ \pi; \nabla \pi \in (L^2(Q))^N \} , \]
\[U = \{ (k, q, \pi); k \in K^\perp, (q, \pi) \in Q \times P \} . \]

From the last section, we have \((q_\theta, \pi_\theta, k_\theta) \in U\), then \(U\) is a nonempty set.

Now, \(\varepsilon > 0\) is fixed, consider the function \(J_\varepsilon\) defined on \(U\) by
\[J_\varepsilon(k, q, \pi) = \frac{1}{2} \|k\|^2_{L^2(\omega_T)} + \frac{1}{2\varepsilon} |L^*q + \nabla \pi - (h + k\chi_{\omega_T})|_{L^2(\omega_T)}^2 . \]

\(J_\varepsilon\) is positive, we set \(d_\varepsilon = \inf_{(k,q,\pi)\in U} J_\varepsilon(k, q, \pi)\). Let \({(k_n^\varepsilon, q_n^\varepsilon, \pi_n^\varepsilon)}\}_{n \in \mathbb{N}}\) a minimizing sequence such that \(d_\varepsilon \leq J_\varepsilon(k_n^\varepsilon, q_n^\varepsilon, \pi_n^\varepsilon) \leq d_\varepsilon + \frac{1}{n}\).

Proposition 2.1. Assume that \(h \in (L^2(Q))^N\) such that \(\Theta h\) belongs to \((L^2(Q))^N\). Then for all \(0 < \varepsilon < 1\), there exists a unique system \((k_\varepsilon, q_\varepsilon, \pi_\varepsilon)\) such that \(J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon) \leq J_\varepsilon(k, q, \pi)\ \forall (k, q, \pi) \in U\).

Proof. 2.1. Convergence of the minimizing sequence \((k_n^\varepsilon, q_n^\varepsilon, \pi_n^\varepsilon)\)

We establish this result following three steps

2.1.1. Convergence of \(k_n^\varepsilon\) and \(q_n^\varepsilon\)

From properties of the sequence \((k_n^\varepsilon, q_n^\varepsilon, \pi_n^\varepsilon)\), we have
\[\frac{1}{2} \|k_n^\varepsilon\|^2_{L^2(\omega_T)} + \frac{1}{2\varepsilon} |L^*q_n^\varepsilon + \nabla \pi_n^\varepsilon - (h + k_n^\varepsilon\chi_{\omega_T})|_{L^2(Q)}^2 \leq d_\varepsilon + \frac{1}{n} . \]

Since \((k_\theta, q_\theta, \pi_\theta)\) is in \(U\), by particularity, we have:
\[\frac{1}{2} \|k_\theta\|^2_{L^2(\omega_T)} + \frac{1}{2\varepsilon} |L^*q_\theta + \nabla \pi_\theta - (h + k_\theta\chi_{\omega_T})|_{L^2(Q)}^2 \leq \frac{1}{2} \|k_\theta\|^2_{L^2(\omega_T)} + 1 . \]

Consequently, we obtain successively:
\[\|k_n^\varepsilon\|_{L^2(\omega_T)} \leq C \quad \text{and} \quad \|L^*q_n^\varepsilon + \nabla \pi_n^\varepsilon - (h + k_n^\varepsilon\chi_{\omega_T})\|_{L^2(Q)} \leq C, \]
where \(C\) designates a constant not depending on \(\varepsilon\) and \(n\). We deduce that the sequences \(k_n^\varepsilon\), \(q_n^\varepsilon\) and \(\pi_n^\varepsilon\) are weakly converging respectively. Indeed, since \(|L^*q_n^\varepsilon + \nabla \pi_n^\varepsilon - (h + k_n^\varepsilon\chi_{\omega_T})| \leq C\) then there exists \(h_\varepsilon \in B(0; C)\) such that \(L^*q_\varepsilon + \nabla \pi_\varepsilon - (h + k_\varepsilon\chi_{\omega_T}) = h_\varepsilon\). So, we observe that the system \({(k_\varepsilon, q_\varepsilon, \pi_\varepsilon)}\) is such that
\[
\begin{aligned}
L^*q_\varepsilon + \nabla \pi_\varepsilon &= h + k_\varepsilon\chi_{\omega_T} + h_\varepsilon & \text{in} & Q, \\
div q_\varepsilon &= 0 & \text{in} & Q, \\
q_\varepsilon &= 0 & \text{on} & \Sigma, \\
q_\varepsilon(0) &= q_\varepsilon(T) &= 0 & \text{in} & \Omega.
\end{aligned}
\]

After multiplying (56) by \(q_\varepsilon\) and integrating by part over \(Q\), we obtain the following estimate:
\[
\begin{aligned}
\frac{1}{2} \|q_\varepsilon(0)\|_{L^2(Q)}^2 - \frac{1}{2} \|q_\varepsilon(T)\|_{L^2(Q)}^2 + \|q_\varepsilon\|_{L^2(0,T;H^1_0(\Omega))}^2 + (q_\varepsilon, \nabla \pi_\varepsilon) \\
\leq \left(\|h + k_\varepsilon 1_{\omega_T}\|_{L^2(Q)} + \|h_\varepsilon\|_{L^2(Q)}\right) \|q_\varepsilon\|_{L^2(Q)} \\
\leq \left(\|h + k_\varepsilon 1_{\omega_T}\|_{L^2(Q)} + \|h_\varepsilon\|_{L^2(Q)}\right) \|q_\varepsilon\|_{L^2(0,T;H^1_0(\Omega))}.
\end{aligned}
\]
As above, because \(\text{div} q^n = 0 \) in \(Q \), we can show that \((q^n, \nabla \pi^n)_{L^2(\Omega_T)} = 0\). Then, since \(q^n(0) = q^n(T) = 0 \), after simplifying, we see that \(\|q^n\|_{L^2(0,T; H^1_0(\Omega))} \leq C \). So, \(q^n \) converges weakly in \((L^2(0,T; H^1_0(\Omega)))^N\). Extracting a subsequence denoted again \(q^n \), we can suppose that \(q^n \) converges strongly in \((L^2(\Omega))^N\). Let \(q_e \) its strong limit in \((L^2(\Omega))^N\), this implies that \(q^n \) converges strongly to \(q_e \) in \((D'(\Omega))^N\).

2.1.2. \(\pi^n_e \) and convergence results

We introduce again the sequences \(q^n_e \) and \(\pi^n_e \) defined as

\[
q^n_e = s^{1/4}e^{-s\alpha^*} (\xi^*)^{1/4} q^n \quad \text{and} \quad \pi^n_e = s^{1/4}e^{-s\alpha^*} (\xi^*)^{1/4} \pi^n.
\]

Hence, (56) becomes

\[
\begin{aligned}
L^* q^n_e + \nabla \pi^n_e &= g^n_e \quad \text{in} \ Q, \\
\text{div} q^n_e &= 0 \quad \text{in} \ Q, \\
q^n_e &= 0 \quad \text{on} \ \Sigma, \\
\pi^n_e(0) &= q^n_e(T) = 0 \quad \text{on} \ \Omega.
\end{aligned}
\]

where \(g^n_e = s^{1/4}e^{-s\alpha^*} (\xi^*)^{1/4} g_n + s^{1/4}e^{-s\alpha^*} (\xi^*)^{1/4} Dq^n_n \nabla \chi - s^{1/4} (e^{-s\alpha^*} (\xi^*)^{1/4})_t q^n_e \), and \(g^n_e = h + h^n_n \chi_{\omega_T} + h^n_n \).

According to properties of regularity for Stokes system, we have:

\[
\int_Q (|\pi^n_e|^2 + |
abla \pi^n_e|^2) \, dx \, dt \leq \int_{O_T} |g^n_e|^2 \, dx \, dt.
\]

From above, we deduce that \(\pi^n_e \) converges weakly in \((L^2(0,T; H^1(\Omega)))^N\). Let \(\pi^*_e \in (L^2(0,T; H^1(\Omega)))^N \) such that \(\pi^n_e \rightharpoonup \pi^*_e \) in \((L^2(0,T; H^1(\Omega)))^N\). In particular, by Rellich-Kondrachov Theorem, we also have \(\pi^n_e \rightharpoonup \pi^*_e \) in \((L^2(\Omega))^N\). Remembering that \(\pi^*_e = s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \pi^*_n \), we claim that \(\pi^*_n \) converges weakly in \((D'(\Omega))^N\).

Indeed, let \(\psi \in D(\Omega) \), we have:

\[
\langle \pi^n_e, \psi \rangle = \langle s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \pi^n_e, \psi \rangle = \langle \pi^*_n, s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \psi \rangle.
\]

Setting \(\psi^* = s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \psi \), then \(\psi^* \) remains in \((D(\Omega))^N\) and moreover since \(\pi^n_e \rightharpoonup \pi^*_e \) in \((L^2(\Omega))^N\), we get \(\langle \pi^n_e, \psi^* \rangle \to \langle \pi^*_e, \psi^* \rangle \). We also have \(\langle \pi^*_n, \psi^* \rangle = \langle s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \pi^*_n, \psi \rangle \).

We conclude that \(\pi^*_n \rightharpoonup s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \pi^*_e \) weakly in \((D'(\Omega))^N\). Throughout the sequel, we put \(\pi^*_e = s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \pi^*_e \).

2.1.3. \(\nabla \pi^n_e \) and convergence results

Now, we show that \(\nabla \pi^n_e \rightharpoonup \nabla \pi^*_e \) in \((D'(\Omega))^N\). To do so, consider \(\Psi = (\Psi_i)_{i=1,\ldots,N} \in (D(\Omega))^N \). We have \(\langle \nabla \pi^n_e, \Psi_i \rangle = \langle \nabla \pi^n_e, \Psi_{e,i} \rangle \) for \(i = 1, \ldots, N \). Since we have \(\pi^n_e = s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \pi^n_e \), we can also write

\[
\langle \nabla \pi^n_e, \Psi_i \rangle = - \langle -s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \pi^n_e, \partial \Psi_{e,i} \rangle \quad \text{for} \ i = 1, \ldots, N.
\]

We also have \(\langle -s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \pi^n_e, \partial \Psi_{e,i} \rangle = \langle \pi^n_e, \xi^* \partial \Psi_{e,i} \rangle \) for \(i = 1, \ldots, N \).

We deduce

\[
\langle \pi^n_e, -s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \partial \Psi_{e,i} \rangle = \langle s^{-1/4}e^{s\alpha^*} (\xi^*)^{-1/4} \partial \pi^*_e, \Psi_{e,i} \rangle = \langle \partial \pi^*_e, \Psi_{e,i} \rangle.
\]

Since \(\pi^n_e \rightharpoonup \pi^*_e \) in \((L^2(\Omega))^N\), then we conclude that for any \(i = 1, \ldots, N \)

\[
\langle \partial \pi^n_e, \Psi_{e,i} \rangle \to \langle \partial \pi^*_e, \Psi_{e,i} \rangle.
\]
That means that $\nabla \pi_n \rightharpoonup \nabla \pi_\varepsilon$ in $(D'(Q))^N$.

It results that $h_n \rightharpoonup L^*_\varepsilon q_\varepsilon + \nabla \pi_\varepsilon - (h + k_\varepsilon \chi_\omega) \in (L^2(Q))^N$. However, h_n converges weakly in $(L^2(Q))^N$, then from uniqueness, we deduce that $L^*_\varepsilon q_\varepsilon + \nabla \pi_\varepsilon - (h + k_\varepsilon \chi_\omega) \in (L^2(Q))^N$.

We achieve this part in showing that $\nabla q_\varepsilon = 0$, in Q $q_\varepsilon(O) = q_\varepsilon(T) = 0$ in $L^2(\Omega)$. Indeed, for any $\psi \in (D(Q))^N$, we have:

$$\int_Q (\text{div} q_n^\varepsilon) \psi dxdt = - \int_Q q_n^\varepsilon \text{div}\psi dxdt.$$

Since $q_n^\varepsilon \rightharpoonup q_\varepsilon$ in $(L^2(Q))^N$, we have $\int_Q (\text{div} q_n^\varepsilon) \psi dxdt \rightarrow - \int_Q q_\varepsilon \text{div}\psi dxdt$. Consequently, since we have $\int_Q q_\varepsilon \text{div}\psi dxdt = - \int_Q (\text{div} q_\varepsilon) \psi dxdt$ and $\text{div} q_n^\varepsilon = 0$, we conclude that $\int_Q (\text{div} q_\varepsilon) \psi dxdt = 0$ and so $\text{div} q_\varepsilon = 0$ in Q.

2.2. Some a priori estimates on the sequence $(k_\varepsilon, q_\varepsilon, \pi_\varepsilon)$.

Before dealing with this part, we observe, from the previous paragraph, that $(k_\varepsilon, q_\varepsilon, \pi_\varepsilon) \in U$. Now, we pass to the low limit in (55). On one hand, as mentioned above, we obtain:

$$\frac{1}{2} \|k_\varepsilon\|^2_{L^2(\omega T)} + \frac{1}{2\varepsilon} \|L^*_\varepsilon q_\varepsilon + \nabla \pi_\varepsilon - (h + k_\varepsilon \chi_\omega)\|^2_{L^2(Q)} \leq \liminf_{n \rightarrow +\infty} J_\varepsilon(k_n^\varepsilon, q_n^\varepsilon, \pi_n^\varepsilon).$$

That means

$$J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon) \leq \liminf_{n \rightarrow +\infty} J_\varepsilon(k_n^\varepsilon, q_n^\varepsilon, \pi_n^\varepsilon). \quad (57)$$

On the other hand, since $J_\varepsilon(k_n^\varepsilon, q_n^\varepsilon, \pi_n^\varepsilon) \leq d_\varepsilon + \frac{1}{n}$ and $d_\varepsilon \leq J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon))$ in particulary, we obey:

$$\liminf_{n \rightarrow +\infty} J_\varepsilon(k_n^\varepsilon, q_n^\varepsilon, \pi_n^\varepsilon) \leq d_\varepsilon \leq J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon). \quad (58)$$

It follows from (57) and (58)

$$J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon) = d_\varepsilon = \inf_{(k,q,\pi) \in U} J_\varepsilon(k, q, \pi). \quad (59)$$

The proof of Proposition 2.1 is achieved. \qed

Proposition 2.2. Assume $h \in (L^2(Q))^N$ such that $h\Theta$ belongs to $(L^2(Q))^N$. Then, there exists $(\hat{\rho}, 0) \in V_0$ such that, the system $(\hat{k}, \hat{q}, \hat{\rho})$ is solution of the optimality systems

$$\begin{cases}
L\hat{\rho} = 0 & \text{in } Q \\
\text{div}\hat{\rho} = 0 & \text{in } Q \\
\hat{\rho} = 0 & \text{on } \Sigma,
\end{cases} \quad (60)$$

$$\begin{cases}
L^*\hat{q} = h + \hat{k}\chi_\omega & \text{in } Q \\
\text{div}\hat{q} = 0 & \text{in } \Sigma \\
\hat{q} = 0 & \text{on } \Sigma \\
\hat{q}(T) = 0 & \text{in } \Omega \\
\hat{q}(0) = 0 & \text{in } \Omega
\end{cases} \quad (61)$$

with

$$\hat{k} = P\hat{\rho}\chi_\omega - \hat{\rho}\chi_\omega \in K^\perp \quad (62)$$
Proof. Since \((k_\Theta, q_\Theta, \pi_\Theta) \in \mathcal{U}\), for any \(\varepsilon > 0\), we have in particular:

\[
J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon) = \inf \{J_\varepsilon(k, q, \pi) : (k, q, \pi) \in \mathcal{U}\}
\]

That means from Definition of \(J_\varepsilon\)

\[
\forall \varepsilon > 0, \quad \frac{1}{2} \|k_\varepsilon\|_{L^2(\omega_T)}^2 + \frac{1}{2\varepsilon} \|L^* q_\varepsilon + \nabla \pi_\varepsilon - (h + k_\varepsilon \chi_{\omega_T})\|_{L^2(Q)}^2 \leq \frac{1}{2} \|k_\Theta\|_{L^2(\omega_T)}^2.
\]

So, we can conclude that \(\|k_\varepsilon\|_{L^2(\omega_T)} \leq \|k_\Theta\|_{L^2(\omega_T)} = C\) and \(\|L^* q_\varepsilon + \nabla \pi_\varepsilon - (h + k_\varepsilon \chi_{\omega_T})\|_{L^2(Q)}^2 \leq C\sqrt{\varepsilon}\).

Arguing as in Sections 2.1 and 2.1.2, we can show that there exists \((q, \tilde{\pi})\) such that

\[
L^* q_\varepsilon + \nabla \pi_\varepsilon \to L^* \tilde{q} + \nabla \tilde{\pi}, \quad \text{in } (\mathcal{D}'(Q))^N. \tag{63}
\]

2.3. A characterization of the sequence control \(k_\varepsilon\).

\(J_\varepsilon\) admits differentiability properties respect to the different variables \(k\), \(q\) and \(\pi\). Consequently, since \(J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon) = \inf_{(k, q, \pi) \in \mathcal{U}} J_\varepsilon(k, q, \pi)\) Euler-Lagrange Conditions at the first order can be formulated as

\[
J_\varepsilon(k_\varepsilon, \gamma(\overline{k} - k_\varepsilon), q_\varepsilon, \pi_\varepsilon^n) - J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon^n) \geq 0,
\]

for any \(\overline{k} \in \mathcal{K}^\perp\), \(q_\varepsilon\) and \(\pi_\varepsilon\).

However, some calculations give

\[
\frac{J_\varepsilon(k_\varepsilon + \gamma(\overline{k} - k_\varepsilon), q_\varepsilon, \pi_\varepsilon^n) - J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon^n)}{\gamma} = \frac{1}{2\varepsilon^2} \left\{ \|L^* q_\varepsilon + \nabla \pi_\varepsilon - (h + k_\varepsilon + \gamma(\overline{k} - k_\varepsilon) \chi_{\omega_T})\|_{L^2(Q)}^2 \right. \\
- \left. \|L^* q_\varepsilon + \nabla \pi_\varepsilon - (h + k_\varepsilon \chi_{\omega_T})\|_{L^2(Q)}^2 \right\} + \frac{1}{2\varepsilon^2} \left[\|k_\varepsilon + \gamma(\overline{k} - k_\varepsilon)\|_{L^2(\omega_T)}^2 - \|k_\varepsilon\|_{L^2(\omega_T)}^2 \right] \\
+ \int_{\omega_T} k_\varepsilon(\overline{k} - k_\varepsilon) dx dt - \int_{Q \setminus \omega_T} \frac{1}{\varepsilon} \|L^* q_\varepsilon + \nabla \pi_\varepsilon - (h + k_\varepsilon \chi_{\omega_T})\|_{L^2(\omega_T)}^2 dx dt.
\]

Let us set \(\rho_\varepsilon = -\frac{1}{\varepsilon} [L^* q_\varepsilon + \nabla \pi_\varepsilon - (h + k_\varepsilon \chi_{\omega_T})]\). We pass to the limit on \(\gamma\) to 0 and we get

\[
\int_{\omega_T} k_\varepsilon(\overline{k} - k_\varepsilon) dx dt + \int_{\omega_T} \rho_\varepsilon(\overline{k} - k_\varepsilon) \chi_{\omega_T} dx dt \geq 0, \quad \forall \overline{k} \in \mathcal{K}^\perp.
\]

We change successively \(\overline{k}\) as \(\overline{k} + k_\varepsilon\) and \(-\overline{k} + k_\varepsilon\), we obtain

\[
\int_{\omega_T} (k_\varepsilon + \rho_\varepsilon \chi_{\omega_T}) dx dt = 0, \quad \forall \overline{k} \in \mathcal{K}^\perp.
\]

That means \(k_\varepsilon + \rho_\varepsilon \chi_{\omega_T} \in \mathcal{K}\). Then since \(k_\varepsilon \in \mathcal{K}^\perp\), we have the following characterization:

\[
k_\varepsilon = P \rho_\varepsilon \chi_{\omega_T} - \rho_\varepsilon \chi_{\omega_T},
\]

where \(P\) designates the projector operator on \(\mathcal{K}\).
2.3.1. Some properties of ρ_ε and some convergence results

Now, we fix here k_ε and π_ε. Let $\eta \in Q$, Euler-Lagrange Conditions give

$$J_\varepsilon(k_\varepsilon, q_\varepsilon + \gamma(\eta - q_\varepsilon), \pi_\varepsilon^\eta) - J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon^\eta) \geq 0, \quad \forall \eta \in Q.$$ \(\tag{64} \)

More precisely,

$$J_\varepsilon(k_\varepsilon, q_\varepsilon + \gamma(\eta - q_\varepsilon), \pi_\varepsilon^\eta) - J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon^\eta) \geq \frac{\gamma}{2\varepsilon} \left[\| L^* (q_\varepsilon + \gamma(\eta - q_\varepsilon)) + \nabla \pi_\varepsilon - (h + k_\varepsilon)\chi_{\omega_T} \|_{L^2(Q)}^2 \\
- \| L^* q_\varepsilon + \nabla \pi_\varepsilon - (h + k_\varepsilon)\chi_{\omega_T} \|_{L^2(Q)}^2 \right]$$

$$= \frac{\gamma}{2\varepsilon} \left[\| L^* (\eta - q_\varepsilon) \|_{L^2(Q)}^2 + \frac{1}{2\varepsilon} \int_Q \rho_\varepsilon L^* (\eta - q_\varepsilon) dx dt \right] \geq 0.$$ \(\tag{65} \)

We change successively η as $\eta - q_\varepsilon$ and $-\eta - q_\varepsilon$. After passing to the limit on γ, we get

$$\int_Q \rho_\varepsilon L^* \eta dx dt = 0, \quad \forall \eta \in Q.$$ \(\tag{66} \)

So, after integrating by part over Q, we have for any $\eta \in Q$

$$\int_Q L\rho_\varepsilon \eta dx dt = \int_Q \rho_\varepsilon L^* \eta dx dt + \left(\rho_\varepsilon, -\frac{\partial \eta}{\partial \nu} \right)_{L^2(\Sigma)}, \quad \forall \eta \in Q.$$ \(\tag{67} \)

On one hand, taking $\eta \in Q$ such that $\frac{\partial \eta}{\partial \nu} = 0$, we deduce

$$L\rho_\varepsilon = 0 \text{ in } Q.$$ \(\tag{68} \)

On the other hand, (65) implies $\left(\rho_\varepsilon, -\frac{\partial \eta}{\partial \nu} \right)_{L^2(\Sigma)} = 0$ in Q for any $\eta \in Q$, such that $L^* \eta = 0$ in Q. In this way, we have

$$\rho_\varepsilon = 0 \text{ on } \Sigma.$$ \(\tag{69} \)

Moreover, we fix $k_\varepsilon, q_\varepsilon$. Employing again Euler-Lagrange Conditions, we have

$$J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon^\eta + \gamma(\pi - \pi_\varepsilon)) - J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon^\eta) \geq 0, \quad \forall \pi \in \mathcal{P}.$$ \(\tag{70} \)

That means

$$\frac{\gamma}{2\varepsilon} \| \nabla (\pi - \pi_\varepsilon) \|_{L^2(Q)}^2 + \| (\nabla (\pi - \pi_\varepsilon))_{L^2(Q)} \|_{L^2(Q)} \geq 0.$$ \(\tag{71} \)

We pass to the limit on γ, and we obtain

$$\left(\nabla (\pi - \pi_\varepsilon), \rho_\varepsilon \right)_{L^2(Q)} \geq 0,$$

We change successively π by $\pi + \pi_\varepsilon$ and $-\pi + \pi_\varepsilon$,

$$\int_Q \rho_\varepsilon \nabla \pi dx dt = 0, \quad \forall \pi \in \mathcal{P}.$$ \(\tag{72} \)
However, \(\int_Q \rho_\varepsilon \nabla \pi dx dt = \int_\Sigma \rho_\varepsilon \pi d\sigma dt - \int_Q \text{div}\rho_\varepsilon dx dt. \) So, thanks to \(\rho_\varepsilon = 0 \) on \(\Sigma \), (67) becomes
\[
\int_Q \pi \text{div}\rho_\varepsilon dx dt = 0, \quad \forall \pi \in \mathcal{P}.
\]
We conclude that
\[
\text{div}\rho_\varepsilon = 0 \quad \text{on} \quad \Sigma. \quad (68)
\]
Consequently, from (65), (66) and (68), we get
\[
\left\{ \begin{array}{l}
L\rho_\varepsilon = 0 \quad \text{in} \quad Q \\
\text{div}\rho_\varepsilon = 0 \quad \text{in} \quad Q \\
\rho_\varepsilon = 0 \quad \text{on} \quad \Sigma.
\end{array} \right. \quad (69)
\]
That means, \((\rho_\varepsilon, 0) \) is in \(V_0 \).

2.3.2. An a priori bound of \(\|\rho_\varepsilon\|_{L^2(\omega_T)} \)

From definition of norm \(\|\cdot\|_{\Theta, 0} \), because \(L\rho_\varepsilon = 0 \) in \(Q \), then we have
\[
\| (\rho_\varepsilon, 0) \|^2_{\Theta, 0} = \int_{\omega_T} |\rho_\varepsilon \chi_{\omega_T} - P\rho_\varepsilon \chi_{\omega_T}|^2 dx dt
\]
Moreover, in the previous section, we have observed that \(k_\varepsilon = P\rho_\varepsilon \chi_{\omega_T} - \rho_\varepsilon \chi_{\omega_T} \), so \(\| (\rho_\varepsilon, 0) \|^2_{\Theta, 0} = \| k_\varepsilon \|^2_{L^2(\omega_T)} \).
\(k_\varepsilon \) being bounded in \((L^2(\omega_T))^N \) and \(\{(\rho_\varepsilon, 0)\}_{\varepsilon>0} \) is also bounded in \(V_0 \). Following Remark 1.5, \((V_0, \|\cdot\|_{\Theta, 0}) \) is an Hilbert space, consequently, there exists \((\tilde{\rho}, 0) \in V_0 \) such that \((\rho_\varepsilon, 0) \) converges weakly to \((\tilde{\rho}, 0) \) in \(V_0 \). So, \((\rho_\varepsilon - \tilde{\rho}, 0) \) converges weakly to \((0, 0) \) in \(V_0 \). Since, \((\rho_\varepsilon - \tilde{\rho}, 0) \in V_0 \), thanks Lemma 1.2, we can write
\[
\int_Q \frac{1}{\Theta} |\rho_\varepsilon - \tilde{\rho}|^2 dx dt \leq C \left[\int_Q |L(\rho_\varepsilon - \tilde{\rho})|^2 dx dt + \int_{\omega_T} |(\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T} - P(\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T}|^2 dx dt \right].
\]
The right hand is bounded independently on \(\varepsilon \) because \(L\rho_\varepsilon = 0 \) in \(Q \) and \(k_\varepsilon = \rho_\varepsilon \chi_{\omega_T} - P\rho_\varepsilon \chi_{\omega_T} \) is bounded. It results that \(\frac{1}{\Theta} (\rho_\varepsilon - \tilde{\rho}) \) is bounded in \((L^2(Q))^N \).

Furthermore, since
\[
\int_{\omega_T} \frac{1}{\Theta} |P(\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T}|^2 dx dt \leq 2 \left[\int_{\omega_T} \frac{1}{\Theta} |(\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T}|^2 dx dt + \int_{\omega_T} \frac{1}{\Theta} |(\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T} - P(\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T}|^2 dx dt \right],
\]
we deduce that \(\frac{1}{\Theta} P(\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T} \) is bounded in \(L^2(\omega_T) \) and then from equivalence of norm, \(P(\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T} \) is also bounded in \((L^2(\omega_T))^N \). Let \(\alpha \) assigned in \((L^2(\omega_T))^N \) such that \(P(\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T} \to \alpha \) in \((L^2(\omega_T))^N \).

Moreover, using Phytagore’s Theorem, we have
\[
\| (\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T} \|^2_{L^2(\omega_T)} = \| P(\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T} \|^2_{L^2(\omega_T)} + \| (\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T} - P(\rho_\varepsilon - \tilde{\rho}) \chi_{\omega_T} \|^2_{L^2(\omega_T)},
\]
and we deduce that \((ρ_ε - ˜ρ) \chi_{ω_T}\) is bounded in \((L^2(ω_T))^N\). Extracting a subsequence, we can assume that the sequence \((ρ_ε - ˜ρ) \chi_{ω_T}\) converges weakly in \((L^2(ω_T))^N\). Let us set \(β ∈ (L^2(ω_T))^N\) such that \((ρ_ε - ˜ρ) \chi_{ω_T} → β\).

In particular, since \(P\) is a continuous operator, we also have \(P (ρ_ε - ˜ρ) \chi_{ω_T} → Pβ\) in \((L^2(ω_T))^N\).

It results that

\[α = Pβ \]

and

\[(ρ_ε - ˜ρ) \chi_{ω_T} - P(ρ_ε - ˜ρ) \chi_{ω_T} → β - Pβ. \]

(70)

We show that \(β = 0\). Indeed, according to definition of the bilinear form \(a_Θ,0\), since \((ρ_ε - ˜ρ,0)\) converges weakly to \((0,0)\) in \(V_0\), for any \((φ,0)\) in \(V_0\),

\[\int_Q L(ρ_ε - ˜ρ) Lφdxdt + \int_{ω_T} [(ρ_ε - ˜ρ) \chi_{ω_T} - P(ρ_ε - ˜ρ) \chi_{ω_T}] (φ \chi_{ω_T} - Pφ \chi_{ω_T}) dxdt \]

(71)

tends to 0 when \(ε\) tends to 0.

Taking \((φ,0)\) in \(V_0\) such that \(Lφ = 0\) in \(Q\), (71) becomes successively

\[\int_{ω_T} [(ρ_ε - ˜ρ) \chi_{ω_T} - P(ρ_ε - ˜ρ) \chi_{ω_T}] (φ \chi_{ω_T} - Pφ \chi_{ω_T}) dxdt = 0, \]

tends to 0 as \(ε\). That means, because

\[\int_{ω_T} [(ρ_ε - ˜ρ) \chi_{ω_T} - P(ρ_ε - ˜ρ) \chi_{ω_T}] φ \chi_{ω_T} dxdt, \]

For any \((φ,0)\) in \(V_0\) such that \(Lφ = 0\) in \(Q\),

\[\int_{ω_T} [(ρ_ε - ˜ρ) \chi_{ω_T} - P(ρ_ε - ˜ρ) \chi_{ω_T}] φ \chi_{ω_T} dxdt, \]

tends to 0 as \(ε\).

From (70), it comes \(\int_{ω_T} (β - Pβ)φ dxdt = 0\). Consequently, we get, \(β - Pβ = 0\). In other words, \(β\) is in \(K\).

Now, because \(β - Pβ = 0\), (71) is reduced to

\[\int_Q L(ρ_ε - ˜ρ) Lφdxdt \]

(72)

tends to 0 when \(ε\) tends to 0, for any \((φ,0)\) in \(V_0\).

Also, \(Lρ_ε = 0\) in \(Q\) and so we have \(L(ρ_ε - ˜ρ)\) converges strongly to \(L ˜ρ\) in \((L^2(Q))^N\). Then, taking \(φ = ˜ρ\) in (72), we obtain \(\int_Q |L ˜ρ|^2 dxdt = 0\). We deduce \(L ˜ρ = 0\) in \(Q\) and so successively, \(L ˜ρ \chi_{ω_T} = 0\) and \(L(ρ_ε - ˜ρ) \chi_{ω_T} → 0\). By uniqueness, we get \(Lβ = 0\) in \(ω_T\).

Finally, \(β\) is such that

\[\begin{cases}
Lβ = 0 & \text{in } ω_T \\
β ∈ K.
\end{cases} \]

Applying hypothesis (21), we get \(β = 0\).

Consequently, we have \(k_ε = Pρ_ε \chi_{ω_T} - ρ_ε \chi_{ω_T} → P ˜ρ \chi_{ω_T} - ˜ρ \chi_{ω_T}\) and \(˜ρ \) is such that \(L ˜ρ = 0\) in \(Q\).
2.4. New definition of \hat{k}

We go back to the definition given to J_ε, and by particular from (59), we have

$$J_\varepsilon(k_\varepsilon, q_\varepsilon, \pi_\varepsilon) \leq J_\varepsilon(k, q, \pi), \quad \forall (k, q, \pi) \in \mathcal{U}. \quad (73)$$

The notations used here are as in the end of Section 1.2. We recall that $\frac{1}{2} \|\hat{k}\|^2_{L^2(\omega_T)} = \min_{k \in \mathcal{E}} \frac{1}{2} \|k\|^2_{L^2(\omega_T)}$. Since $\hat{k} \in \mathcal{E}$, there exists $(\hat{q}, \hat{\pi})$ such that $L^*\hat{q} + \nabla \hat{\pi} - (h + \hat{k}) \chi_{\omega_T} = 0$ in Q, $\text{div} \hat{q} = 0$, $\hat{q} = 0$ on Σ, $\hat{\pi}(T) = \hat{\pi}(0) = 0$ in Ω.

We put $k = \hat{k}$, $q = \hat{q}$ and π in (73), then we have more simply

$$\frac{1}{2} \|k_\varepsilon\|^2_{L^2(\omega_T)} \leq \frac{1}{2} \|\hat{k}\|^2_{L^2(\omega_T)}.$$

After passing to low limit on ε, we obtain

$$\|\hat{k}\|_{L^2(\omega_T)} \leq \liminf_{\varepsilon \to 0} \|k_\varepsilon\|_{L^2(\omega_T)} \leq \|\hat{k}\|_{L^2(\omega_T)}. $$

From (63), since k_ε tends to \hat{k}. So, we have $\left\|L^*\hat{q} + \nabla \hat{\pi} - (h + \hat{k}) \chi_{\omega_T}\right\|_{L^2(Q)} = 0$. That is $\hat{k} \in \mathcal{E}$. Since the solution of the problem $\min_{k \in \mathcal{E}} \frac{1}{2} \|k\|^2_{L^2(\omega_T)}$, is unique, we conclude that $\hat{k} = \hat{k}$.

We have the following characterization $\hat{k} = \tilde{\rho} - P\tilde{\rho}$ and the statement of Proposition 2.2 occurs by taking $\tilde{\rho} \chi_{\omega_T} = \tilde{\rho}$.

3. Proof of Theorem 0.8. A discriminating Sentinel

This section is devoted to apply the results obtained in the Section 3. We go back to Section 1. In particular, we have observed that the determination of a Sentinel is completely in solving problem 16. However, (16) coincides to the problem (15) when $h = h_0 \chi_{\Omega} + k_0 \chi_{\omega_T}$. More precisely, by taking $\tilde{\rho}$ such that

$$\left\{ \begin{array}{ll} L\tilde{\rho} \chi_{\omega_T} & = 0 \quad \text{in} \quad \omega_T \\ \tilde{\rho} \chi_{\omega_T} & \in \mathcal{K} \\ \tilde{\rho} = q(\hat{k}) & \text{solves} \quad (16). \end{array} \right.$$

By taking $\tilde{\omega} = k_0 + \hat{k}$, Definition 0.1 follows and it becomes

Definition 3.1. The function \tilde{S} defined as

$$\tilde{S}(\lambda, \tau) = \int_0^T \int_{\omega_T} h_0 y(x, t; \lambda, \tau) dx dt + \int_0^T \int_\omega \tilde{w} y(x, t; \lambda, \tau) dx dt$$

is a discriminating Sentinel.

Taking $\tilde{O} = \omega$ and $k_0 = -P h_0$, we observe that Definition 3.1 is an extension of the work due to J.L. Lions in [15]. In this case, \tilde{S} becomes $\tilde{S}(\lambda, \tau) = \int_0^T \int_{\omega_T} (h_0 + \tilde{\rho} + P(h_0 + \tilde{\rho})) y(x, t; \lambda, \tau) dx dt$ and coincides with the well known version of Sentinel presented in [15].

Moreover, the insensitivity condition (5) or more precisely (10) becomes

$$\int_0^T \int_{\omega_T} h_0 y_T(x, t) dx dt + \int_0^T \int_\omega \tilde{w} y_T(x, t) dx dt = 0,$$

where $y_T(x, t)$ is defined by (9).
3.1. A use of the concept of sentinel: The identification of the unknown distributed pollution term

Let us now present a use of the concept of sentinel applied to some perturbed Navier-Stokes system. The notations used here are again those of the previous sections. Let \tilde{S}_{obs} be the global information provided by the observation y_{obs}. Since \hat{w} is insensitive with respect to the interfering system $\{m_i\}_{i=1,\ldots,M}$, from Definition 3.1 we have

$$\tilde{S}_{\text{obs}}(\lambda, \tau) - \hat{S}(0, 0) = \int_0^T \int_\Omega (h_0 \chi_\Omega + \hat{w}_\chi) (y_{\text{obs}} - y_0) \, dx \, dt = \int_0^T \int_\Omega (h_0 \chi_\Omega + \hat{w}_\chi) (m_0 - y_0) \, dx \, dt. \quad (74)$$

However, since we have $\tilde{S}_{\text{obs}}(\lambda, \tau) - \hat{S}(0, 0) = \lambda \frac{\partial \hat{S}}{\partial \lambda}(0, 0) + 0(\lambda, \tau)$ and $\frac{\partial \hat{S}}{\partial \lambda}(0, 0) = \int_0^T \int_\Omega (h_0 \chi_\Omega + \hat{w}_\chi) \, y_{\lambda} \, dx \, dt$, we get

$$\lambda \int_0^T \int_\Omega (h_0 \chi_\Omega + \hat{w}_\chi) \, y_{\lambda} \, dx \, dt = \int_0^T \int_\Omega (h_0 \chi_\Omega + \hat{w}_\chi) (m_0 - y_0) \, dx \, dt.$$

From (2), y_{λ} is the unique solution of the linear Navier-Stokes system

$$\begin{cases}
Ly_{\lambda} + \nabla p_{\lambda} &= \xi & \text{in} & Q, \\
div y_{\lambda} &= 0 & \text{in} & Q, \\
y_{\lambda} &= 0 & \text{on} & \Sigma, \\
y_{\lambda}(0) &= 0 & \text{on} & \Omega.
\end{cases} \quad (75)$$

Now, we designate as $\hat{q}(h_0)$ the unique solution of (11) depending on h_0. Multiplying (11) by y_{λ}, we obtain after integrating by part over Q,

$$\int_0^T \int_\Omega (h_0 \chi_\Omega + \hat{w}_\chi) \, y_{\lambda} \, dx \, dt = \int_0^T \int_\Omega \hat{q}(h_0) \, Ly_{\lambda} \, dx \, dt.$$

Since $\text{div}(\hat{q}(h_0)) = 0$ in Q, we also have

$$\int_0^T \int_\Omega (h_0 \chi_\Omega + \hat{w}_\chi) \, y_{\lambda} \, dx \, dt = \int_0^T \int_\Omega \hat{q}(h_0) (Ly_{\lambda} + \nabla p_{\lambda}) \, dx \, dt = \int_0^T \int_\Omega \hat{q}(h_0) \xi \, dx \, dt.$$

It results that the unknown pollution term $\lambda \xi$ can be defined as follows

$$\int_0^T \int_\Omega \hat{q}(h_0) \{\lambda \xi\} \, dx \, dt = \tilde{S}_{\text{obs}}(\lambda, \tau) - \hat{S}(0, 0) = \int_0^T \int_\Omega (h_0 \chi_\Omega + \hat{w}_\chi) (m_0 - y_0) \, dx \, dt.$$

Thus, the proof of the second part of Theorem 0.8 is complete. \hfill \Box

REFERENCES

