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NBI-RPRGM FOR MULTI-OBJECTIVE OPTIMIZATION
DESIGN OF BIO-PROCESSES

R. Ellaia1, A. El Mouatasim1, J. R. Banga 2 and O. H. Sendin2

Abstract. In this work we consider multi-objective optimization problems arising from the domain
of the design of nonlinear bioprocesses. The goals are to maximize the product profit and to minimize
simultaneously the Fixed Capital Investment, by imposing additional constraints in order to ensure
cell viability. As a result, the Pareto-optimal set is obtained for Random Perturbation of Reduced
Gradient Method (RPRGM) by solving a set of nonlinear programming subproblems of multi objective
optimization using the recent Normal Boundary Intersection (NBI), the objective and constraints
functions are assumed to be differentiable.

Résumé. Dans ce travail nous considérons des problèmes d’optimisation multi-objectifs qui apparais-
sent dans le domaine de conception de bioprocess. L’objectif est de maximiser le profit du produit et de
minimiser l’investissement du capital fixe simultanément, en imposant des contraintes supplémentaires
pour assurer la viabilité cellulaire. En conséquence, l’ensemble Pareto-optimal est obtenu par perturba-
tion aléatoire de la méthode du gradient réduit en résolvant un ensemble de programmes non linéaires,
sous-problèmes multi-objectifs obtenus par l’utilisation de la méthode NBI; les fonctions objectifs et
celles des contraintes sont supposées différentiables.

Introduction

A multi-objective problem consists of a vector-valued objective function to be minimized, and of some equality
or inequality constraints, i.e.,





min F (x) = (f1(x), ..., f`(x))T

s. t. gj(x) = 0 , j = 1, ...., m′,
gj(x) ≥ 0 , j = m′ + 1, ...., m,
xl ≤ x ≤ xu

(1)

where x ∈ Rn is the vector of decision variables, f1, ..., f` are objective functions, g1, .., gm′ and gm′+1, .., gm

are possible sets of equality and/or inequality constraints, respectively, which represent process model, and
xl ∈ (R ∪ {−∞})n, xu ∈ (R ∪ {∞})n are the lower and upper bounds for the decision variables. This set of
constraints defines the feasible space, while the set of all possible values of the objective function constitutes
the objective space.

Multi-objective optimization theory shows that in general it is not possible to obtain a single solution which
is simultaneously optimal for all the objective function (of course, if there exists such a point, it provides a
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solution to the problem), but instead there will exist multiple optimal solutions, i.e., improving one objective
usually means degrading others. Thus, the real purpose of multi-objective optimization is to find the set of
solutions which represent the relatively best alternatives ( see for instance [7] and [8]). This set is known as
Pareto optimal and it can be readily used to choose suitable compromises for the optimal design, and so the
concept of optimality has to be replaced by the concept of Pareto optimality [5], there is no unique solution to
this problem.
There exist many examples in engineering design [6], location science [4], and management science [10] involving
the optimization of multiple objectives, but few applications regarding biochemical systems are found in the
literature [11], [15] and [20]. This situation is not surprising, very specially due to the frequent non-convexity of
these problems, a consequence of their non-linear and highly constrained nature, which can result in challenging
problems even for the single objective case [1] and [12].
Many algorithms have been suggested for generating the Pareto optimal set, for example:

• Weighted sum method,
• Goal attainment method,
• Normal Boundary Intersection (NBI),
• Multi-objective Indirect Optimization Method (see for instance [20]),
• Multi-Objective Evolutionary Algorithm (see for instance [18] and [19]).

In this work, we propose the Normal Boundary Intersection (NBI) method [6], which has the advantage of
producting an even spread of points on the Pareto front. NBI works by transforming the non-linear multi-
objective optimization problem into a set of nonlinear programming subproblems which are solved by means of
Random Perturbation of Reduced Gradient method (RPRGM) [9], our main objective was to compare several
solution of NBI-SQP and NBI-RPRGM, highlighting the advantages and drawbacks of each one, by solving one
case study: the multi-objective optimization of ethanol production by Saccharomyces cerevisiae.

1. Pareto optimality

The problem is to find a Pareto optimum of

F : Rn −→ R`,

i.e. a point z ∈ Rn such that there does not exists a point y ∈ Rn with F (y) ≤ F (z) and F (y) 6= F (z). Here,
the inequality sign ≤ between vectors is to be understood in a componentwise sense. Likewise, in what follows,
a strict inequality F (y) < F (z) is to be understood componentwise, too. Then, the concept of Pareto optimality
is introduced as follows:

A feasible solution x∗ is said to be a Pareto optimal (non-inferior or efficient) solution if and only if there is
no x such that fi(x) ≤ fi(x∗), for all i = 1, .., `, with at least one strict inequality. The vector F (x∗) is said to
be non-dominated.

The definition above means that it is not possible to improve one objective without degrading one or more
of the others. In the absence of any further information about the problem, all Pareto optimal solutions are
equally important. Multi-objective optimization implies a decision-making process concerning a great number
of optimal solutions. An ideal multi-objective optimization method should be able to find a set of solutions as
diverse as possible so that the complete optimal trade-off among the objective is captured. Main difficulties
arise from the fact that the Pareto set may present concave parts and/or discontinuities. This situation is rather
frequent since most designs of processes are highly non-linear.

Many solving techniques have been proposed in the last decades. The majority of them requires solving
repeatedly a set of single-objective NLPs which are formed by assigning preferences to each objective.

To define this concept more precisely, consider a feasible region, S, in the parameter space x ∈ Rn that
satisfies all the constraints of problem 1, i.e.,

S = {x ∈ R : gj(x) = 0 , j = 1, .., m′, gj(x) ≥ 0 , j = m′ + 1, .., m, and xl ≤ x ≤ xu}. (2)
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This allows us to define the corresponding feasible region for the objective function space F , i.e.,

F = {F (x) : x ∈ S}, (3)

the performance vector, F (x), maps the parameter space into the objective function space as is represented for
a two-dimensional case in Figure 1.
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Figure 1. Mapping from Parameter Space into Objective Function Space

In the two-dimensional representation of Figure 2, the set of Pareto optimal solutions lies on the curve
between C and D. Points A and B represent specific Pareto optimal points. A and B are clearly locally Pareto
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Figure 2. Set of locally Pareto optimal

optimal points because an improvement in one objective, f1, requires a degradation in the other objective, f2,
i.e.,

f1B < f1A, f2B > f2A.

Since any point in S that is not a Pareto optimal point represents a point in which improvement can be
attained in all the objectives, it is clear that such a point is of no value. Multi-objective optimization is,
therefore, concerned with the generation and selection of locally Pareto optimal points.

2. The Normal Boundary Intersection (NBI) Method

This recent strategy can be considered as the state of the art regarding deterministic methods. NBI has a
number of advantages over other existing methods, including an ensured even spread of points in the Pareto



ESAIM: PROCEEDINGS 121

set [6]. The normal-boundary intersection method uses a geometrically intuitive parameterization to produce
an even spread of points on the Pareto surface, giving an accurate picture of the whole surface. Given any point
generated by NBI, it is usually possible to find a set of weights such that this point minimizes a weighted sum
of objectives, as described above. Similarly, it is usually possible to define a goal programming problem for
which the NBI point is a solution. NBI can also handle problems where the Pareto surface is discontinuous or
non-smooth, unlike homotopy techniques. Unfortunately, a point generated by NBI may not be a Pareto point
if the boundary of the attained set in the objective space containing the Pareto points is nonconvex or ‘folded’
(which happens rarely in problems arising from actual applications). NBI requires the individual minimizers of
the individual functions at the outset, which can also be viewed as a drawback.
The formulation (1), however, must be interpreted as an alternative way. Instead of one objective function,
we have ` objective functions which we want to reduce subject to the constraints. Since some of the objective
functions may conflict with others, one has to find an appropriate compromise depending on priorities of the
user. The ideal situation is to compute a vector x∗ with

(f1(x∗), ..., f`(x∗)) = (f∗1 , ..., f∗` )

where each f∗i , i = 1, ..., `, is the individual minimum value of the corresponding scalar problem





min fi(x)
s. t. gj(x) = 0 , j = 1, ...., m′,

gj(x) ≥ 0 , j = m′ + 1, ...., m,
xl ≤ x ≤ xu

(4)

for i = 1, ..., `. But one has to expect that when reducing one objective function, another one will increase, so
that ideal objective function vector

(f∗1 , ...., f∗` )

will be approximated at most.
It essentially works by solving sequentially a set of single NLPs (NBI subproblems), which are defined as:





max
x,t

t

s. t. Φw + tn̂ = F (x)− f∗,
gj(x) = 0 , j = 1, ...., m′,
gj(x) ≥ 0 , j = m′ + 1, ...., m,
xl ≤ x ≤ xu

(5)

Φ be the ` × ` pay-off matrix in which ith column is F (x∗i ) − f∗, where f∗ is the vector containing the
individual minima of objectives (i.e., the utopia point or shadow minimum) and x∗i is the minimizer of objective

function fi (i.e., minimizers of problem (4)). w is a vector of weights such that
∑̀
i=1

wi = 1, wi ≥ 0, and n̂ is the

quasi-normal direction which has negative components, i.e. it points towards the origin.
Φw defines a point on the so-called Convex Hull of Individual Minima (CHIM). Then the set of points in Rn

that are convex combinations of f∗i − f∗, i.e, {Φw}, is referred to as the CHIM.
Now let us illustrate algebraically how any such boundary point can be found by solving an optimization
problem. Given barycentric coordinates w, Φw represents a point in the CHIM. Let n̂ denote the unit normal
to the CHIM simplex pointing towards the origin; then Φw + tn̂, t ∈ R represents the set of points on the
normal. The intersection between the normal to the CHIM from the point and the boundary of the objective
space F closest to the origin is expected to be Pareto-optimal. This is done for various w, so that an equally
distributed set of them produces an equally distributed set of non-dominated points, which is an useful feature
for the decision-making process. If the Pareto set is convex and the individual minima of the objective are the
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global ones, the solution to this problem is Pareto optimal. As a drawback, NBI solves the set of NLPs by
means of the RPRGM (Random Perturbation of Reduced Gradient Method).
The subproblem (5) shall be referred as the NBI subproblem and written as NBIw, since w is the characterizing
parameter of the subproblem. The solution of these subproblems will be referred to as NBI points. The idea is
to solve NBIw for various w and find several points on the boundary of F , effectively constructing a pointwise
approximation of the efficient frontier.
As indicated earlier, all NBI points are not Pareto optimal points. In bio-objective problems, for every Pareto
optimal point, there exists a corresponding NBI subproblem of which it is the solution.

3. The Random Perturbation of Reduced Gradient Method (RPRGM)

We assume that f1, ..., f` and g1, ......, gm are twice continuously differentiable functions.

3.1. Generalized Reduced Gradient Method

We consider the following problem:




Minimize f(x)
Subject to hi(x) = 0, i = 1, ..,m

0 ≤ x,
(6)

where f and hi, i = 1, ..., m are twice continuously differentiable functions.
Let a feasible solution xk ≥ 0 with hi(xk) = 0 for all i be given. By assumption the Jacobian matrix of the
constraints h(x) = (h1(x), ..., hm(x))t at each x ≥ 0 has full row rank and, for simplicity, at the point xk will
be denoted by

A = Jh(xk).

The generalized reduced gradient method begins with a basis B and a feasible solution xk = (xk
B , xk

N ) such
that where xk

B > 0. Now let us assume that the basis is nondegenerate, i.e. only the non negativity constraints
xN ≥ 0 might be active at the current iterate xk. Let the search direction be a vector dt = (dt

B , dt
N ) in the null

space of the matrix A defined as dB = −B−1NdN and dN ≥ 0. If we define so, then the feasibility of xk + ηd
is guaranteed as long as xk

B + ηdB ≥ 0, i.e. as long as

η ≤ ηmax = min
i∈B,di<0

{−xk
i

di
}.

We still need to define dN ≥ 0 such that it is a descent direction of fN projected on to the coordinate hyperplane
active at the current point xk

N . So we have

dj =





0 if xk
j = 0 and

∂fN (xk
N )

∂xj
≥ 0,

−∂fN (xk
N )

∂xj
otherwise,

j ∈ N.

where fN (xN ) = f(x) = f(B−1b−B−1NxN , xN ).
To complete the description of the algorithm we make a line search to obtain the new point.

xk+1 = Q(xk) = arg min
0≤η≤ηmax

f(xk + ηdk). (7)

If all the coordinates xk+1
B stay strictly positive we keep the basis, otherwise a pivot is made to eliminate the

zero variable from the basis and replace it by a positive but currently non basic coordinate.
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3.2. Stochastic Perturbation

The main difficulty remains the lack of convexity; if f is not convex, the Kuhn-Tucker points may not
correspond to global minima. In the sequel, we shall improve this point by using an appropriate random
perturbation.
The sequence of real numbers {xk}k≥0 is replaced by a sequence of random variables {Xk}k≥0 involving a
random perturbation Pk of the deterministic iteration (7). A simple strategy consists in

X0 = x0 ; ∀k ≥ 0, Xk+1 = Qk(Xk) + Pk (8)

Equation (8) is a perturbation of the descent direction dk, which is replaced by a new direction Dk = dk +Pk/ηk

and the iterations (7) become Xk+1 = Xk + ηkDk. The random perturbation Pk can be generated as follows:
Let us introduce a sequence of n-dimensional random vectors {Zk}k≥0 ∈ S where S is the set of constraints
in the global optimization problem (6). We consider also {ζk}k≥0, a suitable decreasing sequence of strictly
positive real numbers converging to 0 and such that ζ0 ≤ 1.
The procedure generates a sequence Uk = f(Xk). By construction this sequence is decreasing and lower bounded
by U?.

∀k ≥ 0 : U∗ ≤ Uk+1 ≤ Uk (9)
Thus, there exists U ≥ U? such that Uk → U for k → +∞.
The convergence to a global minimum is ensured by the following results (see, for instance, [13], [14]):

Lemma 3.1. Let {Un}n≥0 be a decreasing sequence, lower bounded by U∗. Then, there exists U such that

Un −→ U for n → +∞ .

Assume that, in addition, for any θ ∈ ]U∗, U∗ + ν], there is a sequence of strictly positive real numbers
{cn(θ)}n≥0 such that

∀ n ≥ 0 : P (Un+1 < θ | Un ≥ θ) ≥ cn(θ) > 0 ;
+∞∑
n=0

cn(θ) = +∞. (10)

where P ( . | . ) is the conditional probability. Then U = U∗ almost surely.

The lemma 3.1 is applied to the sequence {Un}n≥0 as follows:

Theorem 3.2. Let

ζk =
√

c

log(k + d)
(11)

If x0 ∈ S then U = U? almost surely.

Proof : (11) satisfies the condition (10).

4. Multi-objective optimal design of a biochemical reactor

This design problem is considered in [3] and [2]. The process consists of a well-stirred, aerobic fermentor in
which Saccharmoyces cerevisiae grows in a medium of sugar cane molasses, and a centrifuge for recovery of cell
mass. The fermentor outlet stream contains biomass and substrate in concentrations X and S, respectively.
After centrifugation, a fraction α of the dilute substrate is recycled to the fermentor.
The constrained multi-objective optimization problem is formulated, assuming steady state operation, to max-
imize the product profit (P) and minimize simultaneously the Fixed Capital Investment (FCI) by adjusting
seven independent variables: h, X, S, α, Fc, F, fv.
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max
h,X,S,α,Fc,F,fv

f1 = P ($107/yr) = 504.10−4(c1XF0 − c2F − c3Fc − c4XF0/3600)

min
h,X,S,α,Fc,F,fv

f2 = FCI($107) = 1.18.10−7(Fbm,vBvV 0.724 + Fbm,cBc(XF0)0.444)

Subject to



F+Fc−(1−α)fvh0.5

πR2 = 0 (i)

−X(F+Fc+αfvh0.5)
πR2h + kXS.e

−S
K = 0 (ii)

F (SF−S)+Fc(Sc−S)
πR2h − kXS.e

−S
K

a+bS = 0 (iii)





0.05Sin − S + y1 = 0

Qmin −XF0 + y2 = 0

−h + 1.8R + y3 = 0, h− 3.6R + y4 = 0

Fc + y5 = 4, F + y6 = 7

S + y7 = 0.5, X + y8 = 50

fv + y9 = 5, α + y10 = 1

h, Fc, F, S, X, fv, α and yi ≥ 0, i = 1, .., 10,

(12)

where
F0 = fvh0.5,

F and SF = 0.3 are the flow rate and substrate concentration of the feed (Fc and Sc = 1) of the concentrated
feed; h,R = 2.1 and

V = πR2h

are the height of liquid holdup, radius and volume of the fermentor, fv is the valve constant; k = 1, K =
0.12, a = 5.4 and b = 180 are constants in the kinetic model; c1 = 5, c2 = 10.8, c3 = 150 and c4 = 0.04 are
cost coefficients, and B (Bv = 1836.5, Bc = 54325) and F (Fbm,v = 4.5, Fbm,c = 3.4) are base cost and
bare module factors for the fermentor and centrifuge. The equality constraints (i)-(iii) in (12) are the mass
balances, and the inequality constraints consist of several design specifications, with Sin the effective inlet feed
concentration,

Sin =
SF F + ScFc + Sαfvh0.5

fvh0.5

and Qmin the minimum capacity of production for the system, which is fixed arbitrarily at 6.
The y1, .., y10 are slack variables in order to as equality constraints. The NBIw subproblems of multi objective
problem (12) can be transformed into an equivalent set of subproblems in the form of problem (6), this idea
applied too in the problem (5) by adding slack variables in inequality constraints.
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wt (0.00, 1.00) (0.05, 0.95) (0.10, 0.90) (0.15, 0.85) (0.20, 0.80) (0.25, 0.75) (0.30, 0.70)

h 3.8592 3.7942 4.8942 5.6418 5.5715 6.9934 7.2492
Fc 0.8819 0.0382 0.0789 0.0868 0.1255 0.0618 0.1455
F 2.0100 1.1913 0.6618 1.4576 1.4414 1.2719 0.5922
S 0.0686 0.1108 0.2004 0.1037 0.1550 0.2643 0.3504
X 3.9562 3.4101 3.7248 3.5248 4.5625 5.1602 9.0992
fv 1.0645 1.2177 1.1483 1.4650 1.3921 1.0863 0.7156
α 0.0000 0.4700 0.7024 0.5505 0.5154 0.5295 0.6120
P 0.3239 1.1014 1.4281 1.6410 2.0448 2.5759 2.9460

FCI 0.0738 0.0723 0.0798 0.0892 0.0952 0.0989 0.1026

Table 1. Results of NBIw giving by RPRGM for w1 : 0.00 → 0.30

wt (0.35, 0.65) (0.40, 0.60) (0.45, 0.55) (0.50, 0.50) (0.55, 0.45) (0.60, 0.40) (0.65, 0.35)

h 7.3994 7.3924 7.4772 7.4859 7.4821 7.5166 7.4882
Fc 0.2410 0.3438 0.4718 0.6378 0.7746 1.0204 1.1018
F 0.4244 0.4053 0.4662 0.4244 0.5075 0.3682 0.5387
S 0.3640 0.3556 0.3499 0.3444 0.3467 0.3341 0.3491
X 11.5696 13.6435 15.5258 17.9135 20.9703 23.3204 27.6966
fv 0.6750 0.6902 0.7241 0.7497 0.7391 0.7877 0.7260
α 0.6260 0.6088 0.5241 0.4750 0.3595 0.3564 0.1718
P 3.2997 3.6325 3.9259 4.2061 4.5514 4.7768 5.2425

FCI 0.1125 0.1198 0.1278 0.1361 0.1431 0.1524 0.1573

Table 2. Results of NBIw giving by RPRGM for w1 : 0.35 → 0.65
The correspondent tmax of subproblem (5) is the subproblem NBIw with wt = (0.45, 0.55).

wt (0.70, 0.30) (0.75, 0.25) (0.80, 0.20) (0.85, 0.15) (0.90, 0.10) (0.95, 0.05) (1.00, 0.00)

h 7.4928 7.4599 7.4619 7.0005 7.3607 7.1498 7.5600
Fc 1.3768 1.2184 1.4320 1.6796 1.9755 2.2080 2.3081
F 0.5156 0.5699 0.3945 0.1633 0.0787 0.0000 0.0000
S 0.3425 0.3669 0.3631 0.3498 0.3391 0.3185 0.3212
X 31.1670 35.6377 39.0048 43.3306 43.5723 43.9738 43.6213
fv 0.7516 0.6446 0.6586 0.6861 0.7470 0.8258 0.8470
α 0.0792 0.0001 0.0000 0.0000 0.0000 0.0072 0.0047
P 5.4740 6.2912 6.6419 7.0346 7.2748 7.7769 8.1520

FCI 0.1664 0.1649 0.1719 0.1781 0.1871 0.1934 0.1979

Table 3. Results of NBIw giving by RPRGM for w1 : 0.70 → 1.00

In Ref. [16] the multi-objective problem formulated above was solved by considering a set of 50 randomly
generated initial points. Original NBI-SQP starts with the search for the individual optima of each objective
function, which are then used to compute the Pareto optimal set.

The stability analysis shows that the only stable solution is point P3, corresponding to the minimum FCI.
The dynamic behavior near equilibrium point of selected designs (Table 4) is analyzed by computing a solution
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Figure 3. Pareto optimal vectors in the objective space using NBI-RPRGM
The example of some globally Pareto optimal points: (P=0.3239, FCI=0.0738), (P=4.7768,
FCI=0.1524) and (P=5.4740, FCI=0.1664).

P1 P2 P3 P4 P5 P6 P7 P8

h 7.5600 7.5600 3.7800 4.4559 3.7800 3.7800 3.7800 3.7800
Fc 2.4437 0.0000 0.0000 0.8968 0.9109 0.6914 0.4033 0.0000
F 0.0000 4.6083 1.2369 0.0000 3.0895 0.0000 0.0000 2.0965
S 0.3107 0.1301 0.1184 0.3969 0.1966 0.4132 0.4850 0.1343
X 42.2704 4.8962 2.5955 46.3447 10.7192 46.8137 43.1549 4.4733
fv 0.8888 1.6760 1.1890 0.4248 1.4550 0.3556 0.2295 1.1813
α 0.0000 0.0000 0.4650 0.0000 0.0000 0.0000 0.0961 0.0872
P 7.5562 3.1775 0.8388 3.6936 2.2378 2.9293 1.8032 1.4478

FCI 0.2041 0.1202 0.0684 0.1367 0.1489 0.1222 0.1012 0.0814

Table 4. Selected designs from the Pareto front

diagram where the steady-state dimensionless cell mass concentration (C1) varies as a function of the Damkohler
number (Da).
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Figure 4. Pareto optimal vectors in the objective space using standard NBI-SQP

5. Conclusions and Future Work

In this paper the Pareto optimal points of any smooth, constrained multi-objective problem with any number
of objective functions find by means of NBI method. Customized RPRGM for solving the NBI subproblem will
also be investigated.
Comparing the results of multi-optimization for the optimal design of biochemical reactor between the original
NBI-SQP (which uses a local method, SQP) and NBI-RPRGM. The NBI method works reasonably well for
a two-objective problem. It is able to produce an accurate approximation of the Pareto curve by generating
an even spread of points. Although the algorithm requires repeated solution of the NBI subproblems, they
are solved very efficiently. However, for more than two objective functions, some Pareto optimal solutions are
overlooked. Moreover, several dominated solutions were obtained.
In a future work, nonsmooth multi-objective problem will be considered using variable metric method via
stochastic perturbation [17].
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