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STABILITY OF SEQUENTIAL MARKOV CHAIN MONTE CARLO METHODS ∗

Andreas Eberle1 and Carlo Marinelli2

Abstract. Sequential Monte Carlo Samplers are a class of stochastic algorithms for Monte Carlo
integral estimation w.r.t. probability distributions, which combine elements of Markov chain Monte
Carlo methods and importance sampling/resampling schemes. We develop a stability analysis by
funtional inequalities for a nonlinear flow of probability measures describing the limit behavior of the
methods as the number of particles tends to infinity. Stability results are derived both under global
and local assumptions on the generator of the underlying Metropolis dynamics. This allows us to prove
that the combined methods sometimes have good asymptotic stability properties in multimodal setups
where traditional MCMC methods mix extremely slowly. For example, this holds for the mean field
Ising model at all temperatures.

1. Introduction

Spectral gap estimates, or, equivalently, Poincaré inequalities, as well as other related functional inequalities
provide powerful tools for the study of convergence to equilibrium of reversible time-homogeneous Markov
processes (see e.g. [8], [9], [10]). In particular, they have been successfully used to analyze convergence properties
of Markov Chain Monte Carlo (MCMC) methods based on reversible Markov chains (see e.g. [11]). The idea
of MCMC methods is to produce approximate samples from a probability distribution µ by simulating for
sufficiently long time an ergodic Markov chain having µ as invariant measure. MCMC methods have become
the standard to carry out Monte Carlo integrations with respect to complex probability distributions in many
fields of applications, including in particular Bayesian statistics, statistical physics, and chemistry. We just
refer the interested reader to [15] and [19] and references therein as an example of work in this area, as the
literature is by now enormous. Since the Markov chain is usually started with an initial distribution that is
very different from µ, strong convergence properties, such as exponential convergence to equilibrium with a
sufficiently large rate, are required to ensure that the corresponding MCMC method produces sufficiently good
approximate samples from µ. However, these strong convergence properties often do not hold in multimodal,
and in particular high-dimensional problems, as they arise in many applications. For example, in statistical
mechanics models with phase transitions, the rate of convergence often decays exponentially in the system size
within the multi-phase regime.

In [12] and [13] we initiate a study of convergence properties by functional inequalities for a different class
of stochastic algorithms that are a combination of sequential Monte Carlo and MCMC methods. Instead of
trying to produce constantly improved samples of a fixed distribution µ, these sequential MCMC methods try
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to keep track as precisely as possible of an evolving sequence (µt)0≤t≤β of probability distributions. Here
µ0 is an initial distribution that is easy to simulate, and µβ is the target distribution that we would like to
simulate. Importance sampling and resampling steps are included to constantly adjust for the change of the
underlying measure. Whereas for MCMC methods exponential asymptotic stability is usually required to obtain
improved samples, the sequential MCMC method starts with a good estimate of µ0, and one only has to control
the growth of the “size” of the error. As a consequence, the method sometimes works surprisingly well in
multimodal situations where traditional MCMC methods fail, cf. also the examples below. The price one has to
pay is that samples from µβ cannot be produced individually. Instead, the corresponding algorithm produces
directly a Monte Carlo estimator for µβ given by the empirical distribution of a system of interacting particles
at the final time. To ensure good approximation properties, a large number N of particles is required.

Variants of such sequential MCMC methods have recently been proposed at several places in the statistics
literature, see in particular Del Moral, Doucet and Jasra [5] and references therein, as well as chapters 7–9 in
[3]. However, precise and general mathematical methods for the convergence analysis, in the spirit of those
developed for traditional MCMC methods by Diaconis, Saloff-Coste, Jerrum, Sinclair, and many others, seem
still to be missing – although very important first steps can be found in the work of Del Moral and coauthors,
cf. e.g. [4], [6] and [7]. The classical approach via Dobrushin contraction coefficients is usually limited to very
regular situations. Moreover, it rarely yields precise statements on the convergence properties, and it can not
be combined easily with decomposition techniques.

Our aim is to make variants of the powerful techniques of the spectral gap/Dirichlet form approach to
convergence rates of time–homogeneous Markov chains (e.g. canonical paths, comparison and decomposition
results) available in the different context of sequential MCMC methods. Mathematically, this means at first to
study a class of nonlinear evolutions of probability measures by functional inequalities. Such a study has been
initiated in a related context by Stannat [22]. In this work, we restrict ourselves to a very simple and natural
variant of sequential MCMC, where importance sampling/resampling is only used to adjust constantly for the
change of the underlying distribution, and MCMC steps at time t are always carried out such that detailed
balance holds w.r.t. the measure µt (and not w.r.t. µ0!). This seems crucial for establishing good stability
properties. The type of sequential Monte Carlo samplers studied here is different from those analyzed by Del
Moral and Doucet in [4]. An algorithmic realization has been applied to simulations in Bayesian mixture models
by Del Moral, Doucet and Jasra in [5], who observed substantial benefits compared to other methods.

In a first step, we study the stability properties of nonlinear flows of probability measures describing the limit
as the number N of particles goes to infinity. In the follow-up work [13] we will apply these results to control
the asymptotic variances of the Monte Carlo estimators as N → ∞. The functional inequality approach enables
us to prove stability properties not only under global but also under local conditions, i.e., if good estimates hold
on each set of a decomposition of the state space. As a consequence, we obtain a procedure for analyzing the
asymptotics of sequential MCMC methods applied to multimodal distributions. For example, in the spirit of
previous results for tempering algorithms by Madras and Zheng [18] and others, we can prove good (polynomial
in the system size and the inverse temperature) stability properties in the case of the mean field Ising model.

Let us now become more precise. Let S denote a finite state space, and µ a probability distribution on S
with full support, i.e. µ(x) > 0 for all x ∈ S. The finiteness of the state space is only assumed to keep the
presentation as simple and non-technical as possible. Most results of this paper extend to continuous state
spaces under standard regularity assumptions. By M1(S) we denote the space of probability measures on S.
As usual,

ν(f) :=
∫

S

f dν =
∑
x∈S

f(x) ν(x)

denotes the expectation of a function f : S → R w.r.t. a measure ν ∈ M1(S). We consider methods for Monte
Carlo integration with respect to the probability distributions of an exponential family

µt(x) =
1
Zt

e−tH(x)µ(x), 0 ≤ t < ∞, (1)
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where H : S → [0,∞) is a given function, and Zt :=
∑

x∈S e−tH(x) µ(x) is a normalization constant. Below, t
will play the rôle of a time parameter for a particle system approximation.

Note that for a fixed β > 0, any given probability distribution ν on S that is mutually absolutely continuous
with respect to µ can be written in the form (1) with t = β by setting H(x) = 1

β log µ(x)
ν(x) . One should then

think of the family (µt)0≤t≤β of probability distributions as a particular way to interpolate between the target
distribution µβ that we would like to simulate, and the reference distribution µ0 = µ that can be simulated
more easily. Although we restrict our attention here to this simple way of interpolating between two probability
distributions, other interpolations can be treated by similar methods. In fact, an arbitrary family (µt)0≤t≤β of
mutually absolutely continuous probability distributions on S with smooth dependence on t can be written in
the form

µt(x) =
1
Zt

e−
∫ t
0 Us(x) ds µ(x) , 0 ≤ t ≤ β , (2)

where Zt is a normalization constant, and (s, x) �→ Us(x) is a continuous non–negative function on [0, β] × S.
Our results below extend to this more general case.

One way to obtain sequential methods for Monte Carlo estimation of expectation values with respect to the
measures µt is to proceed as follows:

a) Construct a semigroup (Φs,t)0≤s≤t<∞ of nonlinear transformations on the space of probability measures
on S, such that

Φs,tµs = µt for all 0 ≤ s ≤ t . (3)
b) Spatial discretization by interacting particle system: Construct an appropriate Markov process (X1

t , . . . , XN
t )

on SN (N ∈ N) related to the nonlinear semigroup Φs,t, and estimate µt = Φ0,tµ by the empirical dis-
tributions

µ̂
(N)
t :=

1
N

N∑
i=1

δXi
t
, t ≥ 0,

of the process with initial distribution µN .
c) Time–discretization: Approximate the continuous time Markov process by a time–discrete Markov chain

on SN (which can then be simulated).
To define the nonlinear semigroup Φs,t we have in mind, we consider the generators (Q-matrices) Lt at time

t ≥ 0 of a time-inhomogeneous Markov chain on S satisfying the detailed balance condition

µt(x)Lt(x, y) = µt(y)Lt(y, x) ∀ t ≥ 0, x, y ∈ S. (4)

The generators Lt are related to the MCMC steps in a corresponding sequential MCMC method. We assume
that Lt(x, y) depends continuously on t. To compare algorithmic performance in a reasonable way, one might
also assume ∑

y �=x

Lt(x, y) ≤ 1 ∀ x ∈ S , (5)

although this is not necessary for the considerations below. For example, Lt could be the generator of a
Metropolis dynamics w.r.t. µt, i.e.,

Lt(x, y) = Kt(x, y) · min
(

µt(y)
µt(x)

, 1
)

for x �= y,

Lt(x, x) = −∑
y �=x Lt(x, y), where the proposal matrix Kt is a given symmetric transition matrix on S. By (4),

Lt defines a symmetric linear operator on L2(S, µt). The associated Dirichlet form on functions f, g : S → R is

Et(f, g) := −Et[f Ltg] =
1
2

∑
x,y∈S

(f(y) − f(x))(g(y) − g(x))Lt(x, y)µt(x) ,
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where Et stands for expectation w.r.t. µt, and (Ltg)(x) :=
∑

y Lt(x, y)g(y). We shall often use the abbreviated
notation Et(f) := Et(f, f).

We also fix non–negative constants Mt (t ≥ 0) that will represent the relative frequency of MCMC moves
compared to importance sampling/resampling steps. Again, we assume that t �→ Mt is continuous.

Let ps,t(x, y) and qs,t(x, y) (x, y ∈ S) be the unique solutions of the forward equations

∂

∂t
ps,tf = ps,t(MtLtf − Hf), ps,sf = f, (6)

∂

∂t
qs,tf = qs,t(MtLtf − Htf), qs,sf = f, (7)

where
Ht := H − Et[H ] .

The linear semigroups ps,t(x, y) and qs,t(x, y) admit the Feynman-Kac representations

ps,tf(x) = Es,x

[
e−

∫
t
s

H(Xr) drf(Xt)
]
,

qs,tf(x) = Es,x

[
e−

∫ t
s

Hr(Xr) drf(Xt)
]
,

where (Xt, Pt,x) is a time-inhomogeneous Markov process with generator Mt · Lt, and Es,x denotes expectation
with respect to Ps,x. In particular one has

qs,tf = exp
(∫ t

s

Er[H ] dr
)

ps,tf.

We consider the nonlinear semigroup

Φs,t : ν �→ νps,t

(νps,t)(S)
=

νqs,t

(νqs,t)(S)
, 0 ≤ s ≤ t,

on the space M1(S) of probability measures on S. Here

νp(y) =
∑
x∈S

ν(x)p(x, y) .

The semigroup Φs,t describes the time evolution of the law of an inhomogeneous Markov chain with generator
Mt · Lt and absorption rate H , conditioned to be alive at time t (see e.g. [2]). It is not difficult to verify that
(3) holds, cf. Remark 2 below.

The quality of Monte Carlo estimates of µt(f) =
∫

f dµt for some function f : S → R can be measured by
the bias and the (asymptotic) variance of the corresponding estimators. The theoretical analysis of sequential
MCMC methods can be subdivided into several steps as above:

a) Stability properties of the semigroup Φs,t.
b) Bias and asymptotic variance of the estimators µ̂N

t (f) = 1
N

∑N
i=1 f(X i

t).
c) Effect of the discretization in time.

In this note, we will focus exclusively on the first step, that is we develop a stability analysis for Φs,t based
on functional inequalities. Detailled proofs are given in [12]. A follow-up paper [13] will be devoted to the time
dependence of the asymptotic (as N → ∞) mean square error of the particle system based estimators µ̂N

t (f).
Let us remark for the moment, that significant work in this direction has already been done, e.g., by del Moral
and Miclo in [7]. The results clearly indicate that techniques very close to those developed here can also be
applied to control the asymptotic variances of the approximating particle systems. This will be made precise
in [13].
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We also point out that usually the time discretization is carried out before the spatial discretization, i.e.
one usually directly considers semigroups and particle systems in discrete time. Even though this is closer to
the algorithmic realization, the convergence analysis becomes more transparent in continuous time due to the
infinitesimal description (at least from an analytic perspective). Moreover, the continuous time setup allows us
to see more clearly how frequently different types of moves of the particle systems should be carried out.

2. Results

2.1. Time evolution of the mean square error

Let νt := Φ0,tν for some given initial distribution ν ∈ M1(S), and let

gt(y) :=
νt(y)
µt(y)

, t ≥ 0,

denote the relative density of νt w.r.t. the measure µt defined by (1). Moreover, let

εt := Et[(gt − 1)2]

denote the mean square error (χ2–contrast) of νt w.r.t. µt. Our first result shows that µt = Φ0,tµ0, and it gives
a general method to analyze the stability of this evolution in an L2 sense:

Theorem 1. (i) νt = Φ0,tν is the unique solution of the nonlinear evolution equation

∂

∂t
νt = MtνtLt − H νt + νt(H) νt, t ≥ 0. (8)

with initial condition ν0 = ν.

(ii) The densities gt solve
∂

∂t
gt = MtLtgt + Et[H(gt − 1)] gt. (9)

(iii) The time evolution of the mean square error is given by

1
2

d

dt
εt = −Mt Et(gt − 1) − 1

2
Et[Ht(gt − 1)2] + Et[Ht(gt − 1)] εt. (10)

Remark 2. (8) is the forward equation for the nonlinear semigroup Φs,t (for s = 0). The corresponding
assertion holds for νt := Φs,tν for t ≥ s > 0. Since µt solves (8), we obtain in particular

µt = Φs,tµs for all t ≥ s ≥ 0 .

Similar equations have been derived in a more general setup by Stannat [22].

Our main objective is to develop efficient tools to bound the growth of εt based on Theorem 1. To estimate
the right-hand side of (10) we have to control the two terms involving Ht (which correspond to importance
sampling/resampling) by the Dirichlet form Et (which corresponds to MCMC moves). We first discuss how this
can be achieved in the presence of a good global spectral gap estimate. Afterwards, we give results based on
local Poincaré-type inequalities, which can sometimes be used to control the error growth in multimodal setups
where good global mixing properties of the underlying Markov chain do not hold.
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2.2. Stability based on global estimates

For t ≥ 0 let
Ct := sup

{
Et[f2]/Et(f, f)

∣∣ f : S → R s.t. Et[f ] = 0 , f �≡ 0
}

denote the (possibly infinite) inverse spectral gap of Lt, and let

At := sup
{

Et[H−
t f2]/Et(f, f)

∣∣ f : S → R s.t. Et[f ] = 0 , f �≡ 0
}

.

Thus Ct and At are the optimal constants in the global Poincaré inequalities

Vart(f) ≤ Ct · Et(f, f) ∀ f : S → R , and (11)
Et[H−

t (f − Et[f ])2] ≤ At · Et(f, f) ∀ f : S → R . (12)

Here Vart denotes the variance w.r.t. µt.

Remark 3. (i) There exist efficient techniques to obtain upper bounds for Ct, for example the method of
canonical paths, comparison methods (see e.g. [20]), as well as decomposition methods (see e.g. [14]). Variants
of these techniques can be applied to estimate At as well.

(ii) Clearly, one has
At ≤ Ct · sup

x∈S
H−

t (x), (13)

so an upper bound on Ct yields a trivial (and usually far from optimal) upper bound on At.

Let
σt(H) := Vart(H)1/2 = Et[H2

t ]1/2

denote the standard deviation of H w.r.t. µt. The next result bounds the error growth in terms of Ct and At :

Theorem 4. If Mt ≥ At/2 for all t ≥ 0, then

d

dt
log εt ≤ −2Mt − At

Ct
+ 2 σt(H)ε1/2

t . (14)

As an immediate consequence of the theorem we obtain estimates on the average relative frequency Mt

of MCMC moves that is sufficient to guarantee stability of the corresponding nonlinear flow of probability
measures:

Corollary 5. Let 0 ≤ β0 < β1, and assume that for all t ∈ (β0, β1),

Mt >
At

2
+ Ctσt(H) ε

1/2
β0

. (15)

Then t �→ εt is decreasing on the interval [β0, β1].

Remark 6. (i) On the finite state spaces considered here, the constants Ct and At are finite if Lt is irreducible.
However, in multimodal situations, the numerical values of these constants are often extremely large. Alternative
estimates based on local Poincaré-type inequalities are given below.

(ii) The case H ≡ 0 corresponds to classical MCMC. Here At = 0 for all t, so ∂εt/∂t ≤ −2Mt

Ct
εt. This yields

the classical exponential decay with rate 2γ of the mean square error in the presence of the global spectral gap
Mt/Ct ≥ γ of the generator Mt · Lt. For H �≡ 0, additional MCMC moves are required to make up for the error
growth due to importance sampling/resampling.

Roughly, the corollary tells us that for small initial error, the stabilizing effects of the MCMC dynamics make
up for the error growth due to importance sampling/resampling provided Mt ≥ At/2.

More drastic improvements due to sequential MCMC appear when good global spectral gap estimates do not
hold, as we shall now demonstrate.
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2.3. Error control based on local estimates

Madras and Randall [17] and Jerrum, Son, Tetali and Vigoda [14] have shown how to derive estimates for
spectral gaps and logarithmic Sobolev constants of the generator of a Markov chain from corresponding local
estimates on the sets of a decomposition of the state space combined with estimates for the projected chain. This
has been applied to tempering algorithms in [18], [1] and [21]. We now develop related decomposition techniques
for sequential MCMC. However, in this case, we will assume only local estimates for the generators Lt, and no
mixing properties for the projections – whence there will be an unavoidable error growth due to importance
sampling/resampling between the components. The resulting convergence estimates can nevertheless improve
those obtained for tempering algorithms, as the example in Section 2.4 below demonstrates. Since mixing
properties for the projections do not have to be taken into account, the analysis of the decomposition simplifies
considerably.

Let 0 ≤ β0 < β1 ≤ ∞. We assume that for every t ∈ (β0, β1), there exist a decomposition

S =
⋃
i∈I

Si
t

into finitely many disjoint sets with µt(Si
t) > 0, as well as non–negative definite quadratic forms E i

t (i ∈ I) on
functions on S such that

∑
i

µt(Si
t) E i

t (f, f) ≤ K · Et(f, f) ∀ t ∈ (β0, β1), f : S → R (16)

for some fixed finite constant K. For example, one might choose E i
t as the Dirichlet form of the Markov chain

corresponding to Lt restricted to Si
t, i.e.,

E i
t (f, f) =

1
2

∑
x,y∈Si

t

(f(y) − f(x))2 Lt(x, y)µt(x |Si
t) . (17)

In this case, (16) holds with K = 1.
Let us denote by E

i
t and Vari

t, respectively, the expectation and variance w.r.t. the conditional measure

µi
t(A) := µt(A|Si

t),

and by π : S → I the natural projection. In particular, for any function f , one has

Et[f |π] =
∑
i∈S

E
i
t[f ] · χSi

t
.

We set
H̃t := H − Et[H |π] .

Assume that the following local Poincaré type inequalities hold for all t ∈ (β0, β1) and i ∈ I with constants
Ai

t, B
i
t ∈ (0,∞) :

E
i
t[−H̃t f2] ≤ Ai

t · E i
t (f, f) ∀f : S → R : Et[f |π] = 0 , (18)∣∣Ei

t[H̃t f ]
∣∣2 ≤ Bi

t · E i
t(f, f) ∀f : S → R : Et[f |π] = 0 . (19)
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Remark 7. (i) Note that to verify (18) it is enough to estimate E
i
t[H̃

−
t f2], while for (19) one has to take into

account the positive part of H̃t as well. In particular, (18) can not be used to derive an estimate of type (19).
However, if (18) holds with −H̃t replaced by |H̃t|, then (19) holds with Bi

t = E
i
t[|H̃t|] · Ai

t.
(ii) If local Poincaré inequalities of the type

Vari
t(f) ≤ Ci

t · E i
t (f, f) ∀ f : S → R, i ∈ I, (20)

hold, then (18) and (19) hold with Ai
t = Ci

t · maxSi H̃−
t and Bi

t = Ci
t · Vari

t(H).

Let
Ât := K · max

i
Ai

t and B̂t := K · max
i

Bi
t .

The central result of this section is the following estimate on the evolution of the error εt :

Theorem 8. If Mt > Ât/2 for all t ∈ (β0, β1) then

d

dt
log εt ≤ B̂t

2Mt − Ât

· (1 + εt) + (1 +
√

εt)
2 · max

i∈I
h−

t (i) (21)

where

ht(i) := E
i
t[H ] − Et[H ] = − ∂

∂s
log µs(Si

t)
∣∣∣∣
s=t

(i ∈ I) . (22)

To understand the consequences of (21), let us first consider the asymptotics as Mt tends to infinity. In this
case, (21) reduces to

d

dt
log εt ≤ (1 +

√
εt)

2 · max h−
t .

In order to ensure that for t > β0 the error εt remains below a given threshold δ > 0, note that as long as
εt ≤ δ, we have

d

dt
log εt ≤

(
1 +

√
δ
)2

· maxh−
t .

Thus

min(εt, δ) ≤ εβ0 · G(1+
√

δ)2

t ∀ t ∈ [β0, β1] , (23)

where

Gt := exp
(∫ t

β0

maxh−
r dr

)
= exp

(∫ t

β0

max
i

∂

∂s
log µs(Si

r)
∣∣∣∣
s=r

dr

)
.

Remark 9. The term G
(1+

√
δ)2

t in (23) accounts for the maximum error growth due to importance sampling
between the components. If Si

t = Si is independent of t for every i, and there is an i0 ∈ I such that ∂
∂s log µs(Si)

is maximized by Si0 for all s ∈ (β0, β1), then

Gt = exp
(∫ t

β0

max
i

d

ds
log µs(Si) ds

)
=

µt(Si0)
µβ0(Si0)

∀ t ≥ β0

is just the growth rate of this strongest growing component. In general, things are more complicated, but a
similar interpretation is at least possible on appropriate subintervals of [β0, β1]

Now we return to the case when Mt is finite. The next corollary tells us how many MCMC moves are
sufficient to obtain an estimate on the error growth that is not much worse than (23).
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Corollary 10. Let β ∈ (β0, β1] and δ > 0. If

Mt ≥ Ât

2
+ (β − β0) · B̂t ∀ t ∈ (β0, β), (24)

then
min(εβ , δ) ≤ εβ0 · G(1+

√
δ)2

β · e 1+δ
2 . (25)

2.4. Example: The mean field Ising model

As a simple example of a bimodal distribution, we now consider the mean field Ising (Curie–Weiss) model,
i.e. µβ is of type (1) where µ0 = µ is the uniform distribution on the hypercube

S = {−1, +1}N ,

and

H(σ) = − 1
2N

N∑
i,j=1

σiσj (26)

for some N ∈ N. Let Lβ be the generator of the (time–continuous) Metropolis chain w.r.t. µβ based on the
nearest neighbour random walk on S as proposal matrix. It is well known that this chain is rapidly mixing (i.e.
the spectral gap decays polynomially in N) for β < 1, but torpid mixing holds (i.e. the spectral gap decays
exponentially fast in N) for β > 1. Thus in the multi-phase regime β > 1, the classical Metropolis algorithm
converges to equilibrium extremely slowly for large N .

Now assume for simplicity that N is odd, and decompose S into the two components

S+ :=

{
σ ∈ S |

N∑
i=1

σi > 0

}
and

S− :=

{
σ ∈ S |

N∑
i=1

σi < 0

}
.

Improving on previous results (e.g. of Madras and Zheng [18]), Schweizer [21] showed recently that the spectral
gaps of the restricted Metropolis chains on both S+ and S− are bounded from below by 1

9N−2 for every β ≥ 0.
Applying the results above to the error growth for sequential MCMC in this situation, we obtain :

Theorem 11. For every β > 0 and N ∈ N,

sup
0≤t≤β

εt ≤ e · ε0

holds whenever ε0 ≤ 1 and

Mt ≥ 9
4

N3 +
9
8

β N4 ∀ t ∈ (0, β). (27)

Remark 12. Let Kβ =
∫ β

0 Mt dt. Note that Kβ is a measure for the total number of MCMC steps that a
corresponding sequential MCMC algorithm will perform on average. The theorem implies that choosing Mt

constant on [0, β] with Kβ of order O(β2N4) is sufficient to guarantee that the nonlinear flow of measures
has good stability properties on [0, β], and can thus be used to efficiently approximate µβ . In contrast to this
situation, the flow of measures corresponding to the standard simulated annealing algorithm has good stability
properties only if Kβ grows exponentially both in β and N .
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cations to non-linear filtering, Séminaire de Probabilités, XXXIV, Lecture Notes in Math., vol. 1729, Springer, Berlin, 2000,
pp. 1–145. MR MR1768060 (2001g:60091)

[8] P. Diaconis and L. Saloff-Coste, Comparison theorems for reversible Markov chains, Ann. Appl. Probab. 3 (1993), no. 3,
696–730. MR MR1233621 (94i:60074)

[9] , Logarithmic Sobolev inequalities for finite Markov chains, Ann. Appl. Probab. 6 (1996), no. 3, 695–750. MR
MR1410112 (97k:60176)

[10] , Nash inequalities for finite Markov chains, J. Theoret. Probab. 9 (1996), no. 2, 459–510. MR MR1385408 (97d:60114)
[11] , What do we know about the Metropolis algorithm?, J. Comput. System Sci. 57 (1998), no. 1, 20–36, 27th Annual

ACM Symposium on the Theory of Computing (STOC’95) (Las Vegas, NV). MR MR1649805 (2000b:68094)
[12] A. Eberle and C. Marinelli, Convergence of sequential Markov chain Monte Carlo methods: I. Nonlinear flow of probability

measures, Preprint.
[13] A. Eberle and C. Marinelli, Convergence of sequential Markov chain Monte Carlo methods: II. Asymptotic analysis of inter-

acting particle systems, In preparation.
[14] M. Jerrum, J.-B. Son, P. Tetali, and E. Vigoda, Elementary bounds on Poincaré and log-Sobolev constants for decomposable
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