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A HIGH-ORDER DISCONTINUOUS GALERKIN METHOD FOR THE SEISMIC

WAVE PROPAGATION

Sarah Delcourte1, Loula Fezoui1 and Nathalie Glinsky-Olivier2

Abstract. We are interested in the simulation of P-SV seismic wave propagation by a high-order
Discontinuous Galerkin method based on centered fluxes at the interfaces combined with a leap-frog
time-integration. This non-diffusive method, previously developed for the Maxwell equations [4,9,20],
is particularly well adapted to complex topographies and fault discontinuities in the medium. We prove
that the scheme is stable under a CFL type condition and that a discrete energy is preserved on an
infinite domain. Convergence properties and efficiency of the method are studied through numerical
simulations in two and three dimensions of space.

Résumé. Nous nous intéressons à la propagation d’ondes sismiques de types P et SV par une méthode
de Galerkin Discontinue d’ordre élevé basée sur des flux centrés aux interfaces combinés à un schéma
saute-mouton en temps. Cette méthode non-dissipative, précédemment développée pour les équations
de Maxwell [4, 9, 20], est particulièrement bien adaptée à des milieux présentant une topographie
complexe ou contenant des failles. On prouve la stabilité du schéma sous une condition de type CFL
ainsi que la conservation d’une energie discrète dans un domaine infini. L’efficacité de la méthode est
illustrée par des simulations numériques en deux et trois dimensions d’espace.

1. Introduction

During an Earthquake, two types of waves are generated: body waves which travel through the interior of
the Earth and surface waves which propagate just at the surface. In what follows, we focus on the body waves
which can be distinguished into two types of waves: the P-waves (as primary waves because they arrive at first
on a seismogram) and the S-waves (as secondary waves; their speed is lower than for the P-waves, so they appear
later on a seismogram). The P-waves are longitudinal and compressive waves which alternatively compress or
distend the ground in the direction of propagation. The S-waves are transverse and shear waves which displace
the ground perpendicularly to the direction of propagation. More, their amplitude is often higher than those
of the P-waves making them more destructive and we can note that fluids do not support shear stresses. The
difference in the arrival time of the P and S-waves allows to specify the distance of an event.

The P-SV wave propagation in an isotropic, linearly elastic medium is modelised by the elastodynamic
equations, which write initially in displacement-stress formulation; let be U = (Uα), α = x, y, z, the displacement
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vector and σ = (σα,β), α, β = x, y, z, the stress tensor, then the system reads






ρ
∂2U

∂t2
= ∇ · σ ,

σ = λ (∇ · U) I + µ (∇U + (∇U)T ) ,

(1)

where I is the identity matrix, ρ is the density of the medium and λ and µ are the Lamé constants.

Using the Helmholtz decomposition of U = ∇φ+ ∇× ψ = Up + Us and properties of the operators, we can
establish the following identity:

∇

(
∂2φ

∂t2
− v2

p ∆φ

)
+ ∇ ×

(
∂2ψ

∂t2
− v2

s ∆ψ

)
= 0 , (2)

where vp =
√

λ+2µ
ρ and vs =

√
µ
ρ are the velocities of the P and S-waves respectively, and vp > vs. One solution

of (2) can be obtained by setting both bracketed terms to zero. This yields two wave equations, one for each
potential φ and ψ, which correspond to the P and S-waves:

∂2φ

∂t2
− v2

p ∆φ = 0 and
∂2ψ

∂t2
− v2

s ∆ψ = 0 . (3)

In order to solve the problem (1), we introduce the velocity vector V =
∂U

∂t
in (1) and we obtain the velocity-

stress formulation, which allows to take into account more easily the boundary conditions:






ρ
∂V

∂t
= ∇ · σ ,

∂σ

∂t
= λ (∇ · V ) I + µ (∇V + (∇V )T ) .

(4)

The most famous method to solve this problem is the finite difference scheme of Virieux [22] which can be
viewed as an adaptation to elastodynamic equations of the Yee’s scheme [23], very popular in electromagnetism.
This method is very easy to implement, second order accurate, not too costly in CPU time and weakly disper-
sive, but the major drawback is the restriction to rectangular grids, not suited for geometrical irregularities.
This method has known later many extensions in three dimensions, to anisotropic media or to higher order of
accuracy for example. Some other methods have been further developed such as the finite element methods
which have allowed to deal with meshes adapted to complex geometries. However, they are very costly because,
at each time-step, one needs to invert a N-diagonal mass matrix with N depending on the order of the method
and the dimension of the space. This difficulty was overcome by the use of Gauss-Lobatto Legendre quadrature
formulae and these methods applied to quadrangular or hexahedral meshes are referenced as spectral element
methods [14].

In what follows, we focus on Discontinuous Galerkin methods which are finite element methods with discon-
tinuities at the interfaces, well adapted to take into account cracks in the medium. They are non-conforming
methods (in the sense of finite elements), so that we can note a greater flexibility (compared to spectral element
methods) in the choice of the local degree p of the polynomial interpolation. They require in general the use of
numerical fluxes, as for the finite volume methods. These methods have been introduced in 1973 by Reed & Hill
to simulate neutron transport. The first analysis of the method for hyperbolic equations has been presented
by Lesaint & Raviart [16, 17] in 1974. Their result has been further improved and the analysis substantially
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broadened by Johnson, Pitkaränta & Nävert [11,12], who have established that the optimal order of convergence
in the L2-norm is p+ 1

2 if polynomials of degree p are used. These methods have only become popular since the
90s with several remarkable contributions as Cockburn et al. [5] who studied the non-linear hyperbolic equations
combined to a Discontinuous Galerkin discretization in space with an explicit Runge-Kutta method in time.
This renewed interest can be explained by the capability of the Discontinuous Galerkin methods to adapt to
most meshes such as unstructured and non-conforming meshes. Moreover, we can note their flexibility in the use
of high-order hp-adaptive finite element methods which consist in techniques of mesh refinement (h-adaptivity)
and in the variation of the degree p of the polynomial interpolation (p-adaptivity); see, for example, Süli et
al. [21] or Demkowicz et al. [7].

For the seismic wave propagation, Käser et al. [8, 13] have been recently interested in the development of
high-order Discontinuous Galerkin method. They combine upwind fluxes through the interfaces with the ADER
scheme in time, so that they get the same order of accuracy in space and in time. However, their scheme is
diffusive. It is the reason why we propose here centered fluxes through the interfaces with a leap-frog time-
discretization, which leads to a non-dissipative combination. The extension to higher order in space is realized
by Lagrange interpolants, locally on triangles (in two dimensions) or on tetraedra (in three dimensions), which
do not necessitate the inversion of a global mass matrix. This method can be viewed as a generalization of
the finite volume method developed in [1] and allows the use of unstructured and non-conforming meshes, well
adapted to heterogeneities of the medium and to complex topographies.

This article is organized as follows. In section 2, we state the velocity-stress formulation in a symmetrical
pseudo-conservative form. Then, in section 3, we detail the discretization of the equations system by the Discon-
tinuous Galerkin method based on centered fluxes in space and a leap-frog scheme in time. The approximation
of the boundary conditions is also presented. After, we study, in section 4, some properties of the scheme and
finally, in section 5, we illustrate this study by some numerical results in two and three dimensions in space on
two types of meshes. Convergence and efficiency of the method are addressed.

2. Velocity-stress formulation in pseudo-conservative form

We note W =
(
V , σ

)T
the vector composed by the velocity components V = (Vx, Vy , Vz)

T and the stress

components σ = (σxx, σyy, σzz , σxy, σxz, σyz)
T . Then, the system (4) can be rewritten as

∂W

∂t
+

∑

α∈{x,y,z}

Aα (ρ, λ, µ) ∂αW = 0 . (5)

Moreover, for any real vector n = (nx, ny, nz)
T , we define the matrix

An(ρ, λ, µ) =
∑

α∈{x,y,z}

Aα(ρ, λ, µ) nα , (6)

which reads:

An(ρ, λ, µ) = −





0 0 0 nx

ρ
0 0

ny

ρ
nz

ρ
0

0 0 0 0
ny

ρ
0 nx

ρ
0 nz

ρ

0 0 0 0 0 nz

ρ
0 nx

ρ

ny

ρ

(λ + 2µ)nx λny λnz 0 0 0 0 0 0
λnx (λ + 2µ)ny λnz 0 0 0 0 0 0
λnx λny (λ + 2µ)nz 0 0 0 0 0 0
µny µnx 0 0 0 0 0 0 0
µnz 0 µnx 0 0 0 0 0 0
0 µnz µny 0 0 0 0 0 0





(7)



ESAIM: PROCEEDINGS 73

Remark that the matrices Aα (ρ, λ, µ), for α ∈ {x, y, z}, are easily deduced from the expression of An(ρ, λ, µ)
by keeping only one component nα equal to 1 while the two other are equal to zero. We choose here not to
detail these matrices.

In order to express the system (5) in pseudo conservative form, we introduce the following change of variables

σ̃ = Rσ on the stress components. For example in 3D

R =





1
3

1
3

1
3 0 0 0

2
3 − 1

3 − 1
3 0 0 0

− 1
3

2
3 − 1

3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




. So, the system reads

Λ (ρ, λ, µ)
∂W̃

∂t
+

∑

α∈{x,y,z}

Ãα ∂αW̃ = 0 , (8)

where W̃ =
(
V , σ̃

)T
and Λ = diag

(
ρ, ρ, ρ,

3

3λ+ 2µ
,

3

2µ
,

3

2µ
,
1

µ
,
1

µ
,
1

µ

)
is a diagonal matrix containing the char-

acteristics of the medium. We can notice that now the matrices Ãα are constant and do not depend anymore
on the material properties.

At last, we multiply the previous system by the following matrix S0 =





1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 2

3
1
3 0 0 0

0 0 0 0 1
3

2
3 0 0 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





in order to obtain a symmetrical system. Therefore, we finally get the symmetrical pseudo-conservative formu-
lation:

Λ0 (ρ, λ, µ)
∂W̃

∂t
+

∑

α∈{x,y,z}

Sα ∂αW̃ = 0 , (9)

where Λ0 = S0Λ and Sα = S0Ãα (α = x, y, z) are symmetric. This formulation will be very useful to establish
the energy conservation. For the numerical simulations, we add boundary conditions on the free surface σ n = 0
or absorbing conditions to approximate an infinite domain.

3. Discretization

We consider a polygonal domain Ω, discretized in NT symplectic elements Ti (triangles in 2D and tetrahedra
in 3D), which form a partition of the domain. We denote by V(i) the set of indices of the neighboring elements
of Ti and we note Sik each internal face common to both elements Ti and Tk i.e. Sik = Ti ∩ Tk. Finally, some
elements Ti have one or more faces common to the boundary of the domain. The set of the indices k of such
faces Sbi

k = Ti ∩ ∂Ω is denoted by E(i). Remark that this set is empty for most elements.
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We multiply each equation of the problem (4) by a scalar test function φTi

l and we integrate them on each
element Ti:

∫

Ti



∂W

∂t
+

∑

α∈{x,y,z}

Aα(ρ, λ, µ) ∂αW



φTi

l dxdydz = 0 . (10)

Then, we assume that the characteristics of the medium (ρ, λ, µ) are constant over each element Ti and we apply
the Green formula to the second term of (10):

∫

Ti

∂W

∂t
φTi

l dxdydz −
∑

α∈{x,y,z}

A
Ti

α

∫

Ti

W ∂αφ
Ti

l dxdydz +A
Ti

n

∫

∂Ti

W φTi

l ds = 0 , (11)

where A
Ti

n is the restriction of An to the element Ti and n represents the outwards unit normal vector to Ti.

Now, we take as test function the Lagrange nodal interpolants φTi

l of Pm(Ti), set of polynomials with a degree

m. Then, each component W of the vector W is approximated on Ti by:

W|Ti
(x, y, z, t) =

ndof∑

j=1

W Ti

j (t) φTi

j (x, y, z) , (12)

where ndof is the number of degrees of freedom on the element Ti and φTi

j (j = 1, ..., ndof) are the associated

basis functions. The first term of (11) can be expressed by:

∀l = 1, ..., ndof ,

∫

Ti

∂

∂t
W φTi

l dxdydz =

ndof∑

j=1

M
Ti

lj

d

dt
Wj

Ti
, (13)

where M
Ti

=

(∫

Ti

φTi

j φTi

l dxdydz

)

1≤j,l≤ndof

denotes the mass matrix on the element Ti.

The second integral of (11) is approximated in the following way:

∀l = 1, ..., ndof ,
∑

α∈{x,y,z}

A
Ti

α

∫

Ti

W ∂αφ
Ti

l dxdydz =
∑

α∈{x,y,z}

A
Ti

α

ndof∑

j=1

G
Ti

α,lj W
Ti

j , (14)

with G
Ti

α =

(∫

Ti

φTi

j ∂αφ
Ti

l dxdydz

)

1≤j,l≤ndof

. Then, to calculate the integral on ∂Ti, we split this boundary

in internal and boundary faces:

∀l = 1, ..., ndof , A
Ti

n

∑

k∈V(i)

∫

Sik

W φTi

l ds+A
Ti

n

∑

k∈E(i)

∫

S
bi
k

W φTi

l ds. (15)

For the interior faces Sik, we apply centered fluxes by introducing the mean value on this face:

W|Sik
=

1

2

(
W

Ti
+ W

Tk

)
. (16)

Therefore, this integral writes

∀l = 1, ..., ndof , A
Ti

n

∑

k∈V(i)

∫

Sik

W φTi

l ds =
1

2
A

Ti

n

∑

k∈V(i)

ndof∑

j=1

[(
R

Ti

|Sik

)

lj

W
Ti

j +

(
R

Tk

|Sik

)

lj

W
Tk

j

]
, (17)
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where we have set R
Ti

|Sik
=

(∫

Sik

φTi

j φ
Ti

l ds

)

1≤j,l≤ndof

and R
Tk

|Sik
=

(∫

Sik

φTk

j φTi

l ds

)

1≤j,l≤ndof

.

For the boundary integrals, two type of boundary conditions have been considered : a free surface condition
at the physical interface between air and the medium, and an absorbing condition on the artificial boundaries
of an infinite domain.
Free surfaces: On these faces, we compute the fluxes by introducing weakly the condition σ n = 0 in the
second term of (15). No special condition is applied on the velocity. So, for a boundary face Sbi

k of Ti, this
integral reduces to

∀l = 1, ..., ndof , A
Ti

n

∫

S
bi
k

W φTi

l ds = A
Ti

n

ndof∑

j=1

(
R

Ti

|
S

bi
k

)

lj

(
W

Ti

|
S

bi
k

)

j

, (18)

where W
Ti

|
S

bi
k

= (V Ti
x , V Ti

y , V Ti
z , 0, 0, 0, 0, 0, 0)T and R

Ti

|
S

bi
k

=

(∫

S
bi
k

φTi

j φ
Ti

l ds

)

1≤j,l≤ndof

.

Absorbing surfaces: To simulate infinite domains, we introduce artificial boundaries, chosen such that the
solution is inside the computational domain and sufficiently far of the frontier, and we impose absorbing condi-
tions.
For any real unit vector n = (nx, ny, nz)

T 6= 0R3 , the matrix An of (6) is diagonalizable in R, ie all its eigenvalues
λk (k=1,...,9) are real:

λ1 = −vp, λ2 = λ3 = −vs, λ4 = λ5 = λ6 = 0, λ7 = λ8 = vs, λ9 = vp ,

and we note P the matrix whose column k is the right eigenvector associated to the eigenvalue λk. The
absorbing boundary conditions are then dealt with an upwind technique where we consider only the outgoing

waves. For that, we write An = A
+

n + A
−

n where we set A
+

n = P Λ+ P
−1

and A
−

n = P Λ− P
−1

with Λ+ =

diag{(λ+
k )1≤k≤9} and Λ− = diag{(λ−k )1≤k≤9} the diagonal matrices composed by the positive λ+

k = max(λk, 0)

and the negative λ−k = min(λk, 0) eigenvalues of An. Then, for a boundary face Sbi

k of Ti, the second integral
of (15) is approximated by:

∀l = 1, ..., ndof , A
Ti

n

∫

S
bi
k

W φTi

l ds = A
Ti

n

+ ndof∑

j=1

(
R

Ti

|
S

bi
k

)

lj

Wj
Ti
. (19)

It is a first-order approximation, efficient for waves with a normal incidence to the artificial boundaries.

At last, we apply a leap-frog time-integration scheme. It is a two step explicit scheme which allows, combined
to the centered fluxes defined at (16)-(17), to get a non-diffusive scheme. We note ∆t the time-step and we

can view the final scheme on each element Ti by introducing discrete operators FTi
α (α = x, y, z) and GTi

α,β

(α, β = x, y, z) which collect the integrals on Ti and ∂Ti :

M
Ti Wn+1

Vα
−Wn

Vα

∆t
= FTi

α

(
V

n
, σn+ 1

2

)
, (20)

M
Ti Wn+ 3

2

σαβ
−Wn+ 1

2

σαβ

∆t
= GTi

α,β

(
V

n+1
, σn+ 1

2

)
, (21)

where WVα
and Wσαβ

are respectively the vectors composed by the ndof values of Vα (α = x, y, z) and σαβ

(α, β = x, y, z) in the element Ti, V
n+1

represents the velocity at (n + 1)∆t and σn+ 1

2 the stress tensor at
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(n+ 1
2 )∆t.

Note that the initialisation is realized at t = t0 for the velocity and at t = t0 + ∆t
2 for the stress tensor.

4. Properties of the scheme

4.1. VF scheme on cubic elementary volumes

Thanks to standard techniques, the following properties for the P0 scheme (finite volumes: VF) on a domain
discretized by parallelepipedic elementary volumes are easy to state:

• First, the scheme is second order consistant in space and in time.

• Then, applying Fourier analysis, we can prove that the scheme is stable under the following optimal
CFL condition:

vp ∆t

√
1

∆x2
+

1

∆y2
+

1

∆z2
≤ 2 , (22)

where ∆x,∆y and ∆z are the standard notations for the lengths of the parallelepipeds in the three
directions.

• Using the Lax theorem, the scheme converges with a second order accuracy to the solution of the elas-
todynamics problem on meshes composed of parallelepipeds when (22) is satisfied.

• For the longitudinal or compressional wave, the dispersion relation ω2 = |kp|2 v2
p is deduced from the

scalar wave equation of (3), whereas for transverse or shear waves, it is deduced from the vectorial wave
equation of (3) and we have ω2 = |ks|2 v2

s , where ω is the pulsation and, kp = (kxp
, kyp

, kzp
)T and

ks = (kxs
, kys

, kzs
)T are the wave number vectors associated to the P and SV-waves respectively (by

convention, |k|2 = k2
x + k2

y + k2
z).

The numerical dispersion relations for the P and SV-waves are given with an order two:

ω
2

»

1 −
w2∆t2

12
+ O

`

w
4∆t

4
´

–

= |kp|
2
v
2
p

"

1 −
k4

xp
∆x2 + k4

yp
∆y2 + k4

zp
∆z2

3 |kp|
2 + O

 

k6
xp

∆x4 + k6
yp

∆y4 + k6
zp

∆z4

|kp|
2

!#

,

ω
2

»

1 −
w2∆t2

12
+ O

`

w
4∆t

4
´

–

= |ks|
2

v
2
s

»

1 −
k4

xs
∆x2 + k4

ys
∆y2 + k4

zs
∆z2

3 |ks|
2 + O

„

k6
xs

∆x4 + k6
ys

∆y4 + k6
zs

∆z4

|ks|
2

«–

.

Remark 4.1. : on a twice as fine grid
(

∆x
2 ,

∆y
2 ,

∆z
2

)
, the optimal CFL condition and the numerical dispersion

error of the VF scheme are the same that those obtained with the finite difference scheme of Virieux [22] on a
grid (∆x,∆y,∆z). These results are similar to those described by Remaki in [19,20] for the Maxwell equations
discretized by centered fluxes through the interfaces combined with a leap-frog time-integration.

4.2. Discrete energy

In order to keep the proof simple, we choose to study the discrete energy only in the 2D case, but it can be
easily extended to the 3D equations. Such a study in both 2D and 3D cases, but leading to a very restrictive
stability condition can be found in [2]. We define the discrete energy En at time n∆t by:

En =
1

2

NT∑

i=1

∫

Ti

[
ρ (Vx

n
i )2 + ρ (Vy

n
i )2 +

1

λ+ µ
σ̃xx

n+1/2
i σ̃xx

n−1/2
i

+
1

µ
σ̃yy

n+1/2
i σ̃yy

n−1/2
i +

1

µ
σ̃zz

n+1/2
i σ̃zz

n−1/2
i

]
. (23)
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Theorem 4.2. On an infinite domain, the discrete elastodynamic energy is preserved through one time-step:

∀n ∈ N
∗, En+1 = En ,

which means the scheme is non-diffusive.

Proof. In the two dimensional case, Eq. (9) can be rewritten as:






ρ
∂V

∂t
=

∑

α∈{x,y}

∂αMασ̃ ,

Λσ̃(λ, µ)
∂σ̃

∂t
=

∑

α∈{x,y}

∂αNαV ,

(24)

with Mx = N
T

x =

(
1 1 0
0 0 1

)
, My = N

T

y =

(
0 0 1
1 −1 0

)
and Λσ̃ = diag

(
1

λ+ µ
,
1

µ
,
1

µ

)
is a diagonal ma-

trix containing the Lamé constants λ and µ associated to the stress vector σ̃ =

(
σxx + σyy

2
,
σxx − σyy

2
, σxy

)T

.

In what follows, we calculate the variation of the discrete energy during one time-step ∆t:

En+1 − En =

NT∑

i=1

[
ρ

∫

Ti

V
n+1

i + V
n

i

2
·
(
V n+1

i − V n
i

)
+

∫

Ti

σ̃
n+ 1

2

i

2
Λσ̃

(
σ̃

n+ 3

2

i − σ̃
n− 1

2

i

)]
. (25)

We define V
[n+ 1

2 ]
i =

V
n+1

i + V
n

i

2
and the previous equation becomes:

E
n+1 − E

n = ∆t

NT
X

i=1

2

4−
X

α∈{x,y}

Z

Ti

„

∂αV
[n+ 1

2
]

i

«T

Mα σ̃
n+ 1

2

i +
1

2

X

k∈V(i)

Z

Sik

„

V
[n+ 1

2
]

i

«T

Mα

„

σ̃
n+ 1

2

i + σ̃
n+ 1

2

k

«

nαik

−
X

α∈{x,y}

Z

Ti

„

∂ασ̃
n+ 1

2

i

«T

Nα V
[n+ 1

2
]

i +
1

2

X

k∈V(i)

Z

Sik

„

σ̃
n+ 1

2

i

«T

Nα

„

V
[n+ 1

2
]

i + V
[n+ 1

2
]

k

«

nαik

3

5 , (26)

where nαik
(α = x, y) are the components of the unit normal vector oriented from Ti to Tk.

As Mα = N
T

α (α = x, y), we easily check that

(
V

[n+ 1

2 ]
i

)T

Mα ∂ασ̃
n+ 1

2

i =
(
∂ασ̃

n+ 1

2

i

)T

Nα V
[n+ 1

2 ]
i and

then, the Green formula implies that:

∫

Ti

(
∂αV

[n+ 1

2 ]
i

)T

Mα σ̃
n+ 1

2

i +

∫

Ti

(
∂ασ̃

n+ 1

2

i

)T

Nα V
[n+ 1

2 ]
i =

∑

k∈V(i)

∫

Sik

(
V

[n+ 1

2 ]
i

)T

Mα σ̃
n+ 1

2

i nαik
. (27)

Therefore, introducing the previous equation in (26), the variation of the discrete energy can be rewritten as:

En+1 − En =
∆t

2

NT∑

i=1

∑

k∈V(i)




∫

Sik

(
V

[n+ 1

2 ]
i

)T

Mα σ̃
n+ 1

2

k nαik
+
∑

k∈V(i)

∫

Sik

(
σ̃

n+ 1

2

i

)T

Nα V
[n+ 1

2 ]
k nαik



 . (28)

Finally, the two terms of En+1 − En vanish on the internal edges thanks to the orientation of nαik
from Ti to

Tk, which means that the discrete elastodynamic energy is preserved in an infinite domain. �
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In what follows, we note ‖W‖Ti
and ‖W‖Sik

the L2-norms of a component W of W over the element Ti and
the face Sik respectively.

Moreover, for any element Ti, we assume that there exists two constants ai and bik (k ∈ V(i)) such that:

∀W ∈ Pm(Ti),






∀α ∈ {x, y, z}, ‖∂αW‖Ti
≤ ai|Si|

|Ti|
‖W‖Ti

,

∀k ∈ V(i), ‖W‖Sik
≤

√
bik |Sik|

|Ti|
‖W‖Ti

,

(29)

where |Sik| is the length of the edge Sik and |Si| =
∑

k∈V(i)

|Sik| (resp. |Ti|) is the perimeter (resp. the area) of

the element Ti.

On the other hand, there exist two integers C1 and C2 such that:

NT∑

i=1

∑

k∈V(i)

‖Vαk
nxik

‖2
Tk

≤ C1

NT∑

i=1

‖Vαi
‖2

Ti
, (30)

NT∑

i=1

∑

k∈V(i)

‖Vαk
nyik

‖2
Tk

≤ C2

NT∑

i=1

‖Vαi
‖2

Ti
. (31)

Remark that C1 and C2 are bounded by the number of faces of the element Ti (ie three for triangles, in 2D).

In the case of a reference triangle T̂ = ((0, 0), (1, 0), (0, 1)), thanks to the orientation of the normal vector n to
the edges, nx or ny can vanish and then C1 = C2 = 2.

Theorem 4.3. On an infinite domain, using the scheme described in section 3, under the assumptions (29),
the discrete elastodynamic energy (23) is preserved through iterations and is a positive definite quadratic form
for all the unknowns of W. Therefore, the scheme is L2-stable under the CFL conditions:

∀i = 1, ..., NT , ρ− (λ + 3µ) ∆t2
a2

i |Si|2
|Ti|2

− ∆t2

4



 max
i=1,...,NT

∑

k∈V(i)

b2ik|Sik|2
|Ti||Tk|



 (C1(λ+ µ) + C2µ) ≥ 0 , (32)

∀i = 1, ..., NT , ρ− (λ + 3µ) ∆t2
a2

i |Si|2
|Ti|2

− ∆t2

4



 max
i=1,...,NT

∑

k∈V(i)

b2ik|Sik|2
|Ti||Tk|



 (C2(λ+ µ) + C1µ) ≥ 0 , (33)

where C1 and C2 are the two integers defined in (30) and (31) respectively.

Proof. At first, we integrate on an element Ti the third equation of (24) multiplied by a function test φ in
Pm(Ti). Applying the procedures of discretization described in section 3, we get:

1

λ+ µ

∫

Ti

σ̃xx
n+1/2
i − σ̃xx

n−1/2
i

∆t
φ dxdydz = −

∫

Ti

(
V n

x

∂φ

∂x
+ V n

y

∂φ

∂y

)
dxdydz

+
1

2

∑

k∈V(i)

∫

Sik

[(
V n

xi
+ V n

xk

)
nxik

+
(
V n

yi
+ V n

yk

)
nyik

]
φ ds .(34)
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We can split the boundary integrals into two integrals by respect to the indices i and k. Then, we apply the
Green formula to those dealing with the couple (Vxi

, Vyi
):

1

2

∑

k∈V(i)

∫

Sik

[
V n

xi
nxik

+ V n
yi
nyik

]
φ ds =

1

2

∫

Ti

[
∂V n

xi

∂x
φ+ V n

xi

∂φ

∂x
+
∂V n

yi

∂y
φ+ V n

yi

∂φ

∂y

]
dxdydz .

So, substituting the previous line in (34) with φ = σ̃xx
n−1/2
i and applying the Cauchy-Schwarz inequality, we

get for T3 =
1

λ+ µ

∫

Ti

σ̃xx
n+1/2
i σ̃xx

n−1/2
i :

T3 ≥ 1

λ+ µ

∥∥∥ σ̃xx
n−1/2
i

∥∥∥
2

Ti

− ∆t

2

∑

k∈V(i)

∥∥V n
xk
nxik

+ V n
yk
nyik

∥∥
Sik

∥∥∥ σ̃xx
n−1/2
i

∥∥∥
Sik

− ∆t

2

[∥∥∥∥
∂V n

xi

∂x

∥∥∥∥
Ti

∥∥∥ σ̃xx
n−1/2
i

∥∥∥
Ti

+

∥∥∥∥
∂V n

yi

∂y

∥∥∥∥
Ti

∥∥∥ σ̃xx
n−1/2
i

∥∥∥
Ti

+
∥∥V n

xi

∥∥
Ti

∥∥∥∥∥
∂ σ̃xx

n−1/2
i

∂x

∥∥∥∥∥
Ti

+
∥∥V n

yi

∥∥
Ti

∥∥∥∥∥
∂ σ̃xx

n−1/2
i

∂y

∥∥∥∥∥
Ti

]
.

Then, applying the assumptions (29) and expressing the previous line as a sum of square terms, we obtain:

T3 ≥ 1

λ+ µ

[∥∥∥ σ̃xx
n−1/2
i

∥∥∥
Ti

−∆t

2
(λ+ µ)



ai|Si|
|Ti|

(∥∥V n
xi

∥∥
Ti

+
∥∥V n

yi

∥∥
Ti

)
+

1

2

∑

k∈V(i)

bik |Sik|√
|Ti||Tk|

∥∥V n
xk
nxik

+ V n
yk
nyik

∥∥
Tk








2

− (λ+ µ)
∆t2

4



ai|Si|
|Ti|

(∥∥V n
xi

∥∥
Ti

+
∥∥V n

yi

∥∥
Ti

)
+

1

2

∑

k∈V(i)

bik |Sik|√
|Ti||Tk|

∥∥V n
xk
nxik

+ V n
yk
nyik

∥∥
Tk




2

.

We focus on the second term of T3 and we apply twice an inequality of type (a + b)2 ≤ 2 (a2 + b2) and the
Cauchy-Schwarz inequality, so that we obtain:

T3 ≥ 1

λ+ µ

[∥∥∥ σ̃xx
n−1/2
i

∥∥∥
Ti

−∆t

2
(λ+ µ)



ai|Si|
|Ti|

(∥∥V n
xi

∥∥
Ti

+
∥∥V n

yi

∥∥
Ti

)
+

1

2

∑

k∈V(i)

bik |Sik|√
|Ti||Tk|

∥∥V n
xk
nxik

+ V n
yk
nyik

∥∥
Tk








2

− (λ+ µ)
∆t2

2



2
a2

i |Si|2
|Ti|2

(∥∥V n
xi

∥∥2

Ti
+
∥∥V n

yi

∥∥2

Ti

)
+

1

4

∑

k∈V(i)

b2ik |Sik|2
|Ti||Tk|

∑

k∈V(i)

∥∥V n
xk
nxik

+ V n
yk
nyik

∥∥2

Tk



 .
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Proceeding in the very same way for the fourth term T4 =
1

µ

∫

Ti

σ̃yy
n+1/2
i σ̃yy

n−1/2
i of the discrete energy (23),

we find:

T4 ≥ 1

µ

[∥∥∥ σ̃yy
n−1/2
i

∥∥∥
Ti

−∆t

2
µ



ai|Si|
|Ti|

(∥∥V n
xi

∥∥
Ti

+
∥∥V n

yi

∥∥
Ti

)
+

1

2

∑

k∈V(i)

bik |Sik|√
|Ti||Tk|

∥∥V n
xk
nxik

− V n
yk
nyik

∥∥
Tk








2

− µ
∆t2

2



2
a2

i |Si|2
|Ti|2

(∥∥V n
xi

∥∥2

Ti
+
∥∥V n

yi

∥∥2

Ti

)
+

1

4

∑

k∈V(i)

b2ik |Sik|2
|Ti||Tk|

∑

k∈V(i)

∥∥V n
xk
nxik

− V n
yk
nyik

∥∥2

Tk



 ,

and for the fifth term T5 =
1

µ

∫

Ti

σ̃xy
n+1/2
i σ̃xy

n−1/2
i , we get:

T5 ≥ 1

µ

[∥∥∥ σ̃xy
n−1/2
i

∥∥∥
Ti

−∆t

2
µ



ai|Si|
|Ti|

(∥∥V n
xi

∥∥
Ti

+
∥∥V n

yi

∥∥
Ti

)
+

1

2

∑

k∈V(i)

bik |Sik|√
|Ti||Tk|

∥∥V n
yk
nxik

+ V n
xk
nyik

∥∥
Tk








2

− µ
∆t2

2



2
a2

i |Si|2
|Ti|2

(∥∥V n
xi

∥∥2

Ti
+
∥∥V n

yi

∥∥2

Ti

)
+

1

4

∑

k∈V(i)

b2ik |Sik|2
|Ti||Tk|

∑

k∈V(i)

∥∥V n
yk
nxik

+ V n
xk
nyik

∥∥2

Tk



 .

When we sum T3, T4 and T5, we are lead to add three terms containing the real number bik. Therefore, applying
(30) and (31), we remark that

NT∑

i=1

∑

k∈V(i)

[
(λ+ µ)

∥∥V n
xk
nxik

+ V n
yk
nyik

∥∥2

Tk
+ µ

∥∥V n
xk
nxik

− V n
yk
nyik

∥∥2

Tk
+ µ

∥∥V n
yk
nxik

+ V n
xk
nyik

∥∥2

Tk

]

≤
NT∑

i=1

[
2(λ+ µ)

(
C1

NT∑

i=1

∥∥V n
xi

∥∥2

Ti
+ C2

NT∑

i=1

∥∥V n
yi

∥∥2

Ti

)
+ 2µ

(
C2

NT∑

i=1

∥∥V n
xi

∥∥2

Ti
+ C1

NT∑

i=1

∥∥V n
yi

∥∥2

Ti

)]
.
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Finally, the discrete elastodynamic energy at n∆t is bounded lower in the following way:

En ≥ 1

2

NT∑

i=1

1

λ+ µ

[∥∥∥ σ̃xx
n−1/2
i

∥∥∥
Ti

−∆t

2
(λ + µ)



ai|Si|
|Ti|

(∥∥V n
xi

∥∥
Ti

+
∥∥V n

yi

∥∥
Ti

)
+

1

2

∑

k∈V(i)

bik |Sik|√
|Ti||Tk|

∥∥V n
xk
nxik

+ V n
yk
nyik

∥∥
Tk








2

+
1

2

NT∑

i=1

1

µ

[∥∥∥ σ̃yy
n−1/2
i

∥∥∥
Ti

−∆t

2
µ



ai|Si|
|Ti|

(∥∥V n
xi

∥∥
Ti

+
∥∥V n

yi

∥∥
Ti

)
+

1

2

∑

k∈V(i)

bik |Sik|√
|Ti||Tk|

∥∥V n
xk
nxik

− V n
yk
nyik

∥∥
Tk








2

+
1

2

NT∑

i=1

1

µ

[∥∥∥ σ̃xy
n−1/2
i

∥∥∥
Ti

−∆t

2
µ



ai|Si|
|Ti|

(∥∥V n
xi

∥∥
Ti

+
∥∥V n

yi

∥∥
Ti

)
+

1

2

∑

k∈V(i)

bik |Sik|√
|Ti||Tk|

∥∥V n
yk
nxik

+ V n
xk
nyik

∥∥
Tk








2

+
1

2

NT∑

i=1



ρ− (λ + 3µ) ∆t2
a2

i |Si|2
|Ti|2

− ∆t2

8



 max
i=1,...,NT

∑

k∈V(i)

b2ik |Sik|2
|Ti||Tk|



 (2C1(λ+ µ) + 2C2µ)



∥∥V n
xi

∥∥2

Ti

+
1

2

NT∑

i=1



ρ− (λ + 3µ) ∆t2
a2

i |Si|2
|Ti|2

− ∆t2

8



 max
i=1,...,NT

∑

k∈V(i)

b2ik |Sik|2
|Ti||Tk|



 (2C2(λ+ µ) + 2C1µ)



∥∥V n
yi

∥∥2

Ti
,

and we can conclude that En is a positive quadratic form of all the unknowns V n
α and σ

n− 1

2

α,β if (32) and (33)
are satisfied ∀i = 1, ..., NT . �

Remark 4.4. The stability conditions (32) and (33) on ∆t are sufficient conditions and may be suboptimal.
Indeed, in the particular case of the finite volumes (P0 polynomial approximation), we have clearly ∀i, ai = 0
and ∀i, ∀k ∈ V(i), bik = 1. For domains partitioned with reference triangles (where h is the smallest altitude)
or squares (where h is the longest edge), we have C1 = C2 = 2 and we obtain from (32) and (33) the following
CFL conditions:

vp
∆t

h
≤ 1√

2
for squares and vp

∆t

h
≤ 1

2
for reference triangles.

However, the Cauchy-Schwarz inequalities are strong majorations and using exclusively the finite volume scheme,
i.e. without integral, we are able, with similar ideas to the previous proof, to obtain the optimal CFL conditions:

vp
∆t

h
≤

√
2 for squares and vp

∆t

h
≤ 1 for reference triangles.

5. Numerical results

5.1. Limit of stability

In order to check numerically the stability of the method, we apply the numerical scheme (20)-(21) in the two
dimensional case. The domain of computation is the unit square and we introduce an explosive point source at
the center (xs, ys) = (0.5, 0.5) of Ω. This source is added as a right-hand side of the system (4), only for the
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diagonal components of the stress tensor σxx and σyy and this source term is δ (xs, ys) s (t) where δ is the Dirac

measure and s (t) is a Ricker function whose expression is s (t) =
[
−1 + 2α (t− t0)

2
]
exp−α(t−t0)2 with t0 = 0.3

and α = 1.0. We impose free surface boundary conditions on all sides of domain and we set adimensional values
for the medium properties ρ = 1.0, λ = 0.5 and µ = 0.25, which implies that vp = 1 and vs = 0.5.

The Dirac measure has the nice property to group together all the frequences, so that we are ensured to get
the more restrictive CFL condition in this case. (To prove this affirmation, we can check that the support of
the Fourier transform of a Dirac measure is R whereas the support of the Fourier transform of an harmonic
eix is reduced to a singleton). Initial conditions for the system are V = 0 and σ = 0. Energy is brought
only by the source for t ∈ [0; 2.5]. For times greater than 2.5s, the source does not provide energy anymore to
the system, so that it is preserved if the scheme is stable. The time-step used for the calculation depends on
geometrical properties of the mesh and is proportional to a cfl value which is a data of the simulation. An
optimal formula for the time-step would provide a stable scheme until the value cfl = 1 in the finite volume
case. For unstructured meshes, such a formula is not easily established. To test the stability of the scheme, two
different meshes have been used : an uniform mesh composed of 800 right triangles and an unstructured mesh
constructed via a mesher depending on the number of points on each side of the domain (here 21 points). A
mesh step h is defined, it is the length of the smallest altitude of the mesh.

On figures 1 and 2, we display the limit of stability of the scheme for both meshes that is the evolution of
energy as a function of time for different values of cfl. Different methods have been tested ; the notation Pk
refers to a method based on polynomials of degree k. When studying the figure 1 for the structured mesh,
we notice than for the P0 method, the scheme is stable until a value of cfl = 1.0. For higher order methods,
the scheme is stable for lower time-steps. The value of cfl is about 0.37 for the P1 method, 0.2 for the P2
method, 0.13 for the P3 method and 0.09 for the P4 method. In all cases, when the scheme is stable, the
energy is preserved for times greater than 2.5s. For the unstructured mesh, figure 2, we remark than P0 scheme
allows cfl values until 1.376 which proves that the time-step formula is non optimal and too restrictive in this
case. For this mesh, the cfl value allowing stability is also decreasing as the order of the method increases and
conservation of the energy is verified.

5.2. Monodimensional pulse

The second problem we have studied is the propagation of a monodimensional pulse. Although this is a one
dimensional problem, it is possible to solve it using the two-dimensional solver. The initial condition for the
impulsion is:

{
Vx(x, t0 = 0) = exp−50(x−x0)

2

,

σxx(x, t0 = 0) = − exp−50(x−x0)
2

,
(35)

and for all t, we assume Vy = 0 and σyy = σxy = 0. The analytical solution in 1D is calculated using the
characteristic method according to the initial condition at t0 = 0. Its expression is:






Vx(t, x) =
1

2

[
Vx(0, x− vp t) −

σxx(0, x− vp t)

ρ vp

]

+
1

2

[
Vx(0, x+ vp t) +

σxx(0, x+ vp t)

ρ vp

]
,

σxx(t, x) =
1

2
ρ vp

[
Vx(0, x+ vp t) +

σxx(0, x+ vp t)

ρ vp

]

− 1

2
ρ vp

[
Vx(0, x− vp t) −

σxx(0, x− vp t)

ρ vp

]
.

(36)
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Figure 1. Evolution of the energy by respect to the time for the uniform mesh.
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Figure 2. Evolution of the energy by respect to the time for the unstructured mesh.

The domain of computation is [0, 2]2 on which we apply absorbing boundary conditions. As previously, we
set dimensionless values for ρ = 1.0, λ = 0.5 and µ = 0.25, then the P and S-wave velocities are respectively
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vp = 1 and vs = 1/2. The pulse is placed in the middle of the domain (x0 = 1.) and the initialisation of the

leap-frog scheme is realized by taking the values at t = 0 for the velocity components and at t = ∆t
2 for the

stress components. Note that in 2D, the matrix

An(ρ, λ, µ) =
∑

α∈{x,y}

Aα(ρ, λ, µ) nα , (37)

is diagonalizable in R, ie all its eigenvalues are real:

λ1 = −vp, λ2 = −vs, λ3 = 0, λ4 = vs, λ5 = vp ,

and the associated eigenvectors form a basis of R
5 and are the columns of the following matrix:

P =





vp nx −vs ny 0 vs ny −vp nx

vp ny vs nx 0 −vs nx −vp ny

λ+ 2µ n2
x −2µ nx ny n2

y −2µ nx ny λ+ 2µ n2
x

λ+ 2µ n2
y 2µ nx ny n2

x 2µ nx ny λ+ 2µ n2
y

2µ nx ny µ (n2
x − n2

y) −nx ny µ (n2
x − n2

y) 2µ nx ny




.

We remind the boundary condition on the absorbing edges

A
Ti

n

∫

S
bi
k

W φTi

l ds = A
Ti

n

+ ndof∑
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Ti
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|
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ndof∑
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(
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|
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bi
k

)

lj
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Ti

j . (38)

The L2-error at the step n between the exact solution and the approximated solution is computed from values
of Vx at n∆t and σxx at (n+ 1

2 )∆t :

errn
L2 =

√√√√
N∑

i=1

dxi

[
(Vx(n∆t, xi) − (Vx)n

i )2 +

(
σxx

((
n+

1

2

)
∆t, xi

)
− (σxx)

n+1/2
i

)2
]
,

where N is the number of points on the line y = 1.0 and dxi is the length of the i-th edge.

On the figures 3, 4, 5 and 6, we have displayed, firstly on the left, the numerical error in the L2-norm in
logarithmic scale by respect to the mesh step h, and secondly on the right, the numerical error in the L2-norm
in logarithmic scale as a function of the CPU time. The meshes are the same as those presented in the previous
section except that unstructured meshes are composed of four Delaunay meshes of the unit square gathered
together. This has been done to explicitly identify in the mesh the lines x = 1 and y = 1 in order to be able to cal-
culate here the L2-error on the line y = 1 without interpolation. The mesh step h is the longest edge of the mesh.

For solutions at times lower than 0.8 s, when the pulse is still completely inside the domain, as on the figures
3 and 4, we observe a second-order convergence on uniform meshes. On unstructured meshes, the order of
accuracy depends of the choice of the degree of the polynomials since a third order convergence is observed for
both P3 and P4 methods. Concerning the efficiency, if a given L2-error is sought, the corresponding CPU time
is always lower for the high order polynomials and for both type of meshes despite the fact that high-order
methods necessitate lower time-steps and more degrees of freedom on each element. So, we can conclude that
the high order approximation method is more accurate and more efficient.

On the other hand, for solutions at times greater than 0.8 s, when the pulse reaches the boundary and goes
out of the domain, as on figures 5 and 6 presenting solutions at time t = 1.0 s, we observe that the order of
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convergence is one for all the methods except the finite volume (P0) method when structured meshes are used.
On the other hand, for unstructured meshes, we remark a second-order convergence. These differences between
solutions, at times t = 0.4 s and t = 1. s, come from the absorbing condition which is not accurate enough,
especially when high degree polynomials are employed. The properties of such absorbing conditions are quite
known : results are not very accurate in presence of grazing waves and for too small numerical domains for
which the boundaries are rapidly reached by the waves. Extension of such absorbing conditions to high order
is not obvious, particularly in three dimensions of space. A way to improve the results consists in surrounding
the domain by Perfectly Matched Layers (PML), initially developed for the Maxwell equations by Bérenger [3].
Many variations of this method have been proposed. Among them, we can quote the convolutional Perfectly
Matched Layer (C-PML) proposed by Komatitsch and Martin [15] for three-dimensional elastodynamic equa-
tions which, compared to other methods, do not necessitate any splitting of the unknowns. We are interested
now in the implementation of such conditions.

Lastly, we remark than the results obtained using unstructured meshes are very satisfactory even better
as those of structured meshes. It is probably due to the choice of Delaunay meshes which have well known
properties. Indeed, each Delaunay mesh has, for example, local orthogonality properties with its dual mesh,
called Voronöı mesh, whereas the only characteristic of structured meshes is periodicity.
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Figure 3. Convergence and CPU time on uniform meshes at t = 0.4 when the wave is inside the domain.

5.3. Propagation of an eigenmode in 3D

The last test case concerns the propagation of an eigenmode in three dimensions of space. The domain of
computation is the unit cubic cavity on which we apply free surface boundary conditions. We are interested in
the (1, 1, 1) mode whose exact solution is given by:






Vx = cos(πx) (sin(πy) − sin(πz)) cos(Ωt) ,
Vy = cos(πy) (sin(πz) − sin(πx)) cos(Ωt) ,
Vz = cos(πz) (sin(πx) − sin(πy)) cos(Ωt) ,
σxx = −A sin(πx) (sin(πy) − sin(πz)) sin(Ωt) ,
σyy = −A sin(πy) (sin(πz) − sin(πx)) sin(Ωt) ,
σzz = −A sin(πz) (sin(πx) − sin(πy)) sin(Ωt) ,
σxy = σxz = σxz = 0 ,

(39)

with A =
√

2 ρ µ and Ω = π
√

2µ
ρ . As previously, we set ρ = 1.0, λ = 0.5 and µ = 0.25, and the initialisation of

the leap-frog scheme is realized by taking the values at t = 0 for the velocity components and at t = ∆t
2 for the
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Figure 4. Convergence and CPU time on unstructured meshes at t = 0.4 when the wave is
inside the domain.
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Figure 5. Convergence and CPU time on uniform meshes at t = 1.0 when the wave is outgoing.
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Figure 6. Convergence and CPU time on unstructured meshes at t = 1.0 when the wave is outgoing.

components of the stress from the analytical expressions (39). The L2-error at the step n between the exact
solution and the approximated solution in the unit cube depends on the velocities Vα (α = x, y, z) at n∆t and
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the stress σαβ (α, β = x, y, z) at (n+ 1
2 )∆t :

errn
L2 =

√√√√√
NT∑

i=1

∫

Ti




∑

α∈{x,y,z}

(Vα(n∆t, xi) − (Vα)n
i )2 +

∑

α,β∈{x,y,z}

(
σαβ

((
n+

1

2

)
∆t, xi

)
− (σαβ)

n+1/2
i

)2


 .

As in 2D, structured and unstructured meshes have been used. Structured meshes are obtained by dividing
the domain in cubic cells which are split in six tetraedra. The unstructured meshes are Delaunay meshes con-
structed by a mesher from 2D surfacic Delaunay meshes of the boundaries of the domain. The mesh step h is
here also the length of the longest edge of the mesh.

On the figures 7 and 8, we display, on the left the numerical error in L2-norm in logarithmic scale by respect to
the mesh step h. On the right of these figures, we represent the numerical error in L2-norm in logarithmic scale
by respect to the CPU time. We observe a second-order convergence on uniform meshes and on unstructured
meshes, the accuracy increases with the order of the method. The convergence order is about k+1 for a method
based on polynomials of degree k. This superconvergence is only possible because, as in the two dimensional
case, the unstructured meshes possess nice properties. More, the free surface condition is accurately discretized
compared to the absorbing condition. If we examine the efficiency, we notice that, to obtain a given L2-error,
methods based on high order polynomials need lower CPU times. So, we can conclude that higher order
approximations are more accurate and more efficient for both type of meshes.
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Figure 7. Convergence and CPU time for the (1,1,1) eigenmode at t = 5.0 on uniform meshes.
(computations on 8 processors)

6. Conclusion

We proposed a Discontinuous Galerkin method to solve the elastodynamic equations, written in velocity-stress
formulation, in two and three dimensions of space. This non-diffusive method relies on a centered scheme in
space and a leap-frog scheme in time. Studying the discrete energy of the system, we proved that it is preserved
by the method on an infinite domain. More, the scheme is stable under a CFL-type condition. Stability and
convergence are numerically studied via several computations in two and three dimensions of space. Globally,
the results are similar to those obtained for the Maxwell equations. The main conclusions of this study are
the accuracy and the efficiency of the method particularly for higher orders polynomials. The free surface
boundary condition is accurately approximated. On the contrary, the absorbing boundary condition could be
improved, by introducing Perfectly Matched Layers. Results are also dependent on the quality of the mesh, the
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Figure 8. Convergence and CPU time for the (1,1,1) eigenmode at t = 5.0 on unstructured meshes.

unstructured Delaunay meshes providing better results as simple structured meshes. Now, we will be interested
in simulations of more realistic problems including point (explosion or point-dislocation) or extended (dynamic
non-planar crack rupture) sources and complex media. Moreover, some studies on high-order leap-frog schemes
are in progress in order to improve accuracy in time.
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tinus, Ph.D. thesis Nice-Sophia Antipolis University, 2007.
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[8] M. Dumbser and M. Käser, An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes

II: the three-dimensional isotropic case, to appear in Geophysical J. Int.
[9] L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a Discontinuous Galerkin time-domain

method for the 3D heterogeneous Maxwell equations on unstructured meshes, M2AN, 39 (6), pp 1149–1176, 2005.
[10] K.O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math., 11, pp 333–418, 1958.
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