
ESAIM: PROCEEDINGS, May 2009, Vol. 27, p. 122-137

C. Besse, O. Goubet, T. Goudon & S. Nicaise, Editors

TRAVEL TIME ESTIMATION BY CROSS CORRELATION OF NOISY SIGNALS

Josselin Garnier1 and George Papanicolaou2

Abstract. In this review paper we consider the problem of estimating the singular support of the
Green’s function of the wave equation by using passive sensors. We assume that noise sources emit
stationary random signals into the medium which are recorded by sensors. We show that the cross
correlation of the recorded signals has enough information to identify the singular component of the
Green’s function, which provides an estimate of the travel time between the sensors. We consider
different situations, such as when the support of the noise distribution extends over all space or is
spatially limited, the medium is open or bounded, homogeneous or inhomogeneous, dissipative or not.
We discuss the limitations of the cross correlation technique and identify configurations under which
travel time estimation is possible. We show that iterated cross correlations using auxiliary sensors can
be efficient for travel time estimation when the support of the noise source distribution is spatially
limited.

1. Introduction

In this paper we consider the estimation of the Green’s function of the wave equation in an inhomogeneous
medium by cross correlation of noisy signals. We assume that noise sources with unknown spatial support emit
stationary random signals, that propagate into the medium and are recorded at observation points. The cross
correlation of the recorded signals has been shown to provide a reliable estimate of the Green’s function and the
travel time between the observation points in geophysics [22]. The travel time estimates can then be used for
background velocity estimation. Indeed tomographic travel time velocity analysis, based on cross correlations,
was applied successfully for surface-wave velocity estimation in Southern California [29], in Tibet [39], and in
the Alps [36].

The idea of using the cross correlation of noisy signals to retrieve information about travel times was used
previously in helioseismology and seismology [18,25,32]. It is now applied to seismic data from regional to local
scales [21, 22, 34], volcano monitoring [9, 10, 30] and petroleum prospecting [17]. When the noise sources are
uncorrelated and have support that extends over all space, the derivative of the cross correlation of the recorded
signals can be shown to be proportional to the symmetrized Green’s function between the observation points [27].
This property also holds when the source distribution has limited spatial support provided the waves propagate
in an ergodic cavity [3, 14, 15]. At the physical level this result has been established in other configurations
provided that the noisy field is equipartitioned [23, 24, 35, 38]. In an open environment this means that the
recorded signals are an uncorrelated and isotropic superposition of plane waves in all directions. In a closed
environment it means that the recorded signals are superpositions of normal modes with random amplitudes that
are statistically uncorrelated and identically distributed. In this paper we introduce a mathematical formulation
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in which travel time estimation by cross correlation of noisy signals is possible when there is enough noise source
diversity.

In many realistic environments the noise source distribution is spatially limited and the field is not equipar-
titioned. As a result, the waves recorded by the observation points are dominated by the flux coming from the
direction of the noise sources, which results in an azimuthal dependence of the quality of the Green’s function
estimation, with poor results for some azimuths [36]. To overcome this problem, Campillo and Stehly [12] have
recently proposed the use higher-order cross correlations. In this paper, we first explain why the usual cross
correlation technique fails when the noise sources have limited spatial support. We then show that iterated
cross correlations using auxiliary observation points can exploit the enhanced directional diversity of the waves
scattered by the heterogeneities of the medium. We analyze a special fourth-order cross correlation function
that can provide acceptable travel time estimates even when the support of the noise sources is spatially limited.

The paper is organized as follows. In Section 2 we describe the physical principles for travel time estimation by
cross correlation of noisy signals. In Section 3 we present a mathematical formulation of the estimation problem.
In Sections 4 we give a simple proof of the relation between the cross correlation and the Green’s function when
the sources are distributed all over space. In Section 5 we present the Helmholtz-Kirchhoff theorem and its
application to cross correlations when the noise sources completely surround the region under investigation. In
Sections 4-5 it is sufficient to assume that the recording time is much larger than the coherence time of the
sources and then the full Green’s function can be estimated. When the noise sources have a spatially limited
distribution, the singular (high-frequency) component of the Green’s function can still be estimated provided
that some additional conditions are fulfilled. As a result travel time estimation is still possible provided that the
typical travel time is much larger than the coherence time of the noise sources. In Section 6 we give conditions
under which travel time estimation by cross correlations is possible in an open medium when the noise sources
are spatially localized, using stationary phase analysis. In Section 7 we show that travel time estimation in
an ergodic cavity is possible even when the sources are spatially localized, using semi-classical analysis. In
Section 8 we study properties of iterated cross correlations, which requires the analysis of fluctuations of cross
correlations due to heterogeneities in the medium, and we show that travel time estimation can be done with
iterated cross correlations even when the spatial support of the noise source distribution is limited.

2. Travel time estimation with cross correlations

In this section we present the physical context that motivates travel time estimation with cross correlations,
and discuss the limitations of this approach.

We would like to reconstruct the background velocity of the earth’s crust. The usual technique for this is
to wait for an earthquake to occur, which plays the role of a source, and to record the signals (seismograms)
at various observation points. Travel time estimation is done using the recorded direct arrivals and then, if
enough observation points are available, it is possible to construct a map of the background velocity. The direct
arrivals correspond to ballistic waves that propagate along rays from the sources to the observation points.
After the direct arrivals, the seismograms are long oscillatory signals with decreasing amplitude but still above
the noise level. These signals correspond to coda waves that are scattered by the heterogeneities of the earth
crust. Coda waves have been analyzed because they contain information about the medium [2, 31]. It was
understood only very recently that the background noise (the stationary, noisy signals recorded during the long
time intervals between earthquakes) also contains information about the medium. The issue is then how to
extract this information, which is not as easy as travel time estimation from direct arrivals.

The noise signals recorded over time intervals between earthquakes have components due to surface waves
generated from the interaction of the ocean swell with the coast [36]. The medium in which the waves propagate
has a slowly varying background velocity profile, which determines the travel times that we want to estimate,
as well as heterogeneities that are responsible for wave scattering. It was proposed in [18, 25] to compute the
cross correlation (in time) of the noisy signals u(t,x1) and u(t,x2) recorded at two observation points x1 and
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Figure 1. When the spatial support of the noise sources (circles) extends over all space then
the cross correlation function is symmetric. Its positive and negative parts correspond to the
Green’s function between x1 and x2 and its anti-causal form, respectively.

x2:

CT (τ,x1,x2) =
1
T

∫ T

0

u(t,x1)u(t+ τ,x2)dt . (1)

In a homogeneous medium, if the source of the waves is a space-time stationary random field that is also delta
correlated in space and in time then it can been shown [27,35] that

∂

∂τ
CT (τ,x1,x2) ' G(τ,x1,x2)−G(−τ,x1,x2) , (2)

where G is the time-domain Green’s function of the wave propagation process. This approximate equality
holds for T sufficiently large, provided some limiting absorption is introduced to regularize the integral. When
the medium is homogeneous, a mathematical analysis of (2) is given in Section 4. When the medium is
inhomogeneous and the sources surround the inhomogeneous region of interest, then (2) still holds, as can be
shown by the Kirchhoff-Helmholtz theorem [37] that we present in Section 5. The main point here is that the
time-symmetrized Green’s function can be obtained from the cross correlation if there is enough source diversity.
In this case the wave field at any sensor is essentially equipartitioned, in the sense that it is a superposition of
uncorrelated plane waves in all directions. The travel time between x1 and x2 can be obtained from the singular
support of the cross correlation.

The configuration (Figure 1) in which the spatial support of the noise sources extends over all space is rarely
encountered in applications. Significant departures from this ideal situation occur when limited spatial diversity
of the sources introduces directivity into the recorded fields, which affects the quality of the estimate of the
Green’s function. If, in particular, the source distribution is spatially localized, then the flux of wave energy
is not isotropic, and the cross correlation function is not symmetric (Figure 2). In some situations it may be
impossible to distinguish the coherent part of the cross correlation function, which contains information about
the travel time (Figure 3). A mathematical analysis using the stationary phase method is given in Section 6.

In the case of a spatially localized distribution of noise sources, directional diversity of the recorded fields
can be enhanced if there is sufficient scattering in the medium. An ergodic cavity with a homogeneous or
inhomogeneous interior is a good example (Figure 4, left): Even with a source distribution that has very limited
spatial support, the reverberations of the waves in the cavity generate interior fields with high directional
diversity [3,14]. We analyze this situation in Section 7. Multiple scattering of waves by random inhomogeneities
can also lead to wave field equipartition if the transport mean free path is short compared to the distance from
the sources to the sensors [22,28,31]. The transport mean free path is the propagation distance over which wave
energy transport in a scattering medium is effectively isotropic. In such a scattering medium (Figure 4, right),
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Figure 2. When the distribution of noise sources is spatially localized then the cross correla-
tion function is not symmetric.

x1

x2

0 100 200 300 400 500 600 700 800 900 1000
t

piece of signal recorded at x1

0 100 200 300 400 500 600 700 800 900 1000
t

piece of signal recorded at x2

!500 !400 !300 !200 !100 100 200 300 400 5000
t

cross correlation x1!x2

Figure 3. When the distribution of noise sources is spatially localized then the coherent part
of the cross correlation function can be difficult or even impossible to distinguish if the axis
formed by the two sensors is perpendicular to the main direction of energy flux from the noise
sources.

the inhomogeneities can be viewed as secondary sources in the vicinity of the sensors. In Section 8 we describe
how to exploit the enhanced directional diversity of the scattered waves.

The role of scattering in a random medium for travel time estimation depends on the transport mean free
path. We have just seen that directional diversity is enhanced provided that the transport mean free path is
short compared to the distance between the sources and the sensors. If the transport mean free path is short
compared to the distance between the sensors, then the cross correlation function gives an acceptable estimate
of the Green’s function, which is random because of the medium. The coherent part of the Green’s function
that has information about the travel time is essentially unobservable. Therefore, when the noise sources are
spatially limited then the travel time can be estimated in a random medium provided that (i) the transport mean
free path is short compared to the distance between the sources and the sensors, and (ii) it is long compared to
the distance between the sensors. This is the physical situation in which the random inhomogeneities actually
enhance the estimation process.
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x1 x2
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Figure 4. Configurations in which wave fields have directional diversity. An ergodic cavity
(left figure) and a randomly inhomogeneous medium (right figure).

3. The empirical cross correlation and the statistical cross correlation

We consider the solution u of the wave equation in a d-dimensional inhomogeneous medium:

1
c2(x)

∂2u

∂t2
−∆xu = nε(t,x) . (3)

The domain can be bounded, with prescribed boundary conditions at the boundary, or unbounded, in which
case the support of the inhomogeneous region is assumed to be compactly supported. The term nε(t,x) models
a random distribution of noise sources. It is a zero-mean stationary (in time) Gaussian process with autocorre-
lation function

〈nε(t1,y1)nε(t2,y2)〉 = F ε(t2 − t1)Γε(y1,y2) . (4)
Here 〈·〉 stands for statistical average with respect to the distribution of the noise sources. The parameter ε
denotes the ratio of the decoherence time of the noise sources over the typical travel time between sensors. In
the first sections of this paper, ε can be arbitrary. In Sections 6-8 we assume that ε is small and carry out an
asymptotic analysis using this hypothesis. We can then write the time correlation function F ε in the form

F ε(t2 − t1) = F
( t2 − t1

ε

)
, (5)

where t1 and t2 are scaled relative to typical sensor travel times. The Fourier transform F̂ ε of the time
correlation function is a nonnegative, even real-valued function. It is proportional to the power spectral density
of the sources:

F̂ ε(ω) = εF̂ (εω) , (6)
with the Fourier transform defined by

F̂ (ω) =
∫
F (t)eiωtdt . (7)

The spatial distribution of the noise sources is characterized by the auto-covariance function Γε. It is the
kernel of a symmetric nonnegative definite operator. For simplicity, we assume in the first sections of this paper
that the process nε is delta-correlated in space:

Γε(y1,y2) = θ(y1)δ(y1 − y2) , (8)

where θ characterizes the spatial support of the sources. One can consider a more general form for the spatial
auto-covariance function as is done in Section 7. This requires the use of semiclassical analysis, but the results
do not change qualitatively.
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The stationary solution of the wave equation has the integral representation

u(t,x) =
∫ ∫

G(s,x,y)nε(t− s,y)dsdy , (9)

where G(t,x,y) is the time-dependent Green’s function. It is the fundamental solution of the wave equation

1
c2(x)

∂2G

∂t2
−∆xG = δ(t)δ(x− y) , (10)

starting from G(0,x,y) = ∂tG(0,x,y) = 0 (and extended to the negative time axis by G(t,x,y) = 0 ∀t ≤ 0).
The empirical cross correlation of the signals recorded at x1 and x2 for an integration time T is defined by

(1). It is a statistically stable quantity, in the sense that for a large integration time T , CT is independent of
the realization of the noise sources. This is stated in the following proposition proved in [20].

Proposition 3.1. 1. The expectation of CT (with respect to the noise source distribution) is independent of T :

〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2) , (11)

where C(1) is given by

C(1)(τ,x1,x2) =
∫
dy
∫∫

dsds′G(s,x1,y)G(τ + s+ s′,x2,y)F ε(s′)θ(y) , (12)

or equivalently by

C(1)(τ,x1,x2) =
∫
dy
∫
dωĜ(ω,x1,y)Ĝ(ω,x2,y)F̂ ε(ω)e−iωτθ(y) . (13)

2. The empirical cross correlation CT is a self-averaging quantity:

CT (τ,x1,x2) T→∞−→ C(1)(τ,x1,x2) , (14)

in probability with respect to the distribution of the sources. More precisely, the fluctuations of CT around its
mean value C(1) are of order T−1/2.

In this paper, we shall always assume that the integration time T is large enough so that the empirical cross
correlation CT can be considered as equal to the statistical cross correlation C(1).

4. Emergence of the Green’s function for an extended distribution of
sources in a homogeneous medium

We give an elementary proof of the relation between the cross correlation and the Green’s function when
the medium is homogeneous and open with background velocity c0, and the source distribution extends over
all space, i.e. θ ≡ 1, as in Figure 1. In this case the signal amplitude diverges because the contributions from
the noise sources far away from the sensors are not damped. For a well-posed formulation we need to introduce
some dissipation, so we consider the solution u of the damped wave equation:

1
c20

( 1
Ta

+
∂

∂t

)2

u−∆xu = nε(t,x) . (15)

The following proposition can be found in [20]. A somewhat different form, with delta-correlated in time sources
and with a different definition of dissipation, can be found in [27].
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Proposition 4.1. In a three-dimensional open medium with dissipation, if the source distribution extends over
all space θ ≡ 1, then

∂

∂τ
C(1)(τ,x1,x2) = −c

2
0Ta
4

e−
|x1−x2|
c0Ta

[
F ε ∗G(τ,x1,x2)− F ε ∗G(−τ,x1,x2)

]
, (16)

where ∗ stands for the convolution in τ and G is the Green’s function of the homogeneous medium without
dissipation:

G(t,x1,x2) =
1

4π|x1 − x2|
δ
(
t− |x1 − x2|

c0

)
.

If the decoherence time of the sources is much shorter than the travel time (i.e., ε � 1), then F ε behaves
like a Dirac distribution in (16) and we have

∂

∂τ
C(1)(τ,x1,x2) ' e−

|x1−x2|
c0Ta

[
G(τ,x1,x2)−G(−τ,x1,x2)

]
,

up to a multiplicative constant. It is therefore possible to estimate the travel time τ(x1,x2) = |x1 − x2|/c0
between x1 and x2 from the cross correlation, with an accuracy of the order of the decoherence time of the
noise sources.

Proof. The Green’s function of the homogeneous medium with dissipation is: Ga(t,x1,x2) = G(t,x1,x2)e−
t
Ta .

The cross correlation function is given by (12):

C(1)(τ,x1,x2) =
∫
dy
∫∫

dsds′Ga(s,x1,y)Ga(τ + s+ s′,x2,y)F ε(s′) .

Integrating in s and s′ gives

C(1)(τ,x1,x2) =
∫

dy
16π2|x1 − y| |x2 − y|

e−
|x1−y|+|x2−y|

c0Ta F ε
(
τ − |x1 − y| − |x2 − y|

c0

)
.

We parameterize the locations of the sensors by x1 = (h, 0, 0) and x2 = (−h, 0, 0), where h > 0, and we use the
change of variables for y = (x, y, z): x = h sin θ coshφ , φ ∈ (0,∞) ,

y = h cos θ sinhφ cosψ , θ ∈ (−π/2, π/2) ,
z = h cos θ sinhφ sinψ , ψ ∈ (0, 2π) ,

whose Jacobian is J = h3 cos θ sinhφ(cosh2 φ − sin2 θ). Using the fact that |x1 − y| = h(coshφ − sin θ) and
|x2 − y| = h(coshφ+ sin θ), we get

C(1)(τ,x1,x2) =
h

8π

∫ ∞
0

dφ sinhφ
∫ π/2

−π/2
dθ cos θe−

2h coshφ
c0Ta F ε

(
τ +

2h sin θ
c0

)
.

After the new change of variables u = h coshφ and s = (2h/c0) sin θ, we obtain

C(1)(τ,x1,x2) =
c20Ta
32πh

e−
2h
c0Ta

∫ 2h/c0

−2h/c0

dsF ε
(
τ + s

)
.

By differentiating in τ , we get

∂

∂τ
C(1)(τ,x1,x2) =

c20Ta
32πh

e−
2h
c0Ta

[
F ε
(
τ +

2h
c0

)
− F ε

(
τ − 2h

c0

)]
,
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Figure 5. The sources are distributed on the sphere ∂B(0, L) and the medium is homogeneous
outside the ball B(0, D).

which is the desired result since |x1 − x2| = 2h. �

5. Emergence of the Green’s function for an extended distribution of
sources in an inhomogeneous medium

The cross correlation function is closely related to the symmetrized Green’s function from x1 to x2 not only
for a homogeneous medium but also for an inhomogeneous medium, as discussed in the introduction. Here we
give a simple and rigorous proof for an open inhomogeneous medium in the case in which the noise sources
are located on the surface of a sphere that encloses both the inhomogeneous region and the sensors, located at
x1 and x2 (Figure 5). The proof is based on an approximate identity that follows from Green’s identity and
the Sommerfeld radiation condition. This approximate identity can be viewed as a version of the Helmholtz-
Kirchhoff integral theorem (known in acoustics [6, p. 473] and in optics [8, p. 419]) and it is also presented
in [37].

Proposition 5.1. Let us assume that the medium is homogeneous with background velocity ce outside the ball
B(0, D) with center 0 and radius D. Then, for any x1,x2 ∈ B(0, D) we have for L� D:

Ĝ(ω,x1,x2)− Ĝ(ω,x1,x2) =
2iω
ce

∫
∂B(0,L)

Ĝ(ω,x1,y)Ĝ(ω,x2,y)dS(y) . (17)

Proof. We consider the equation satisfied by the time-harmonic Green’s function with the source at x2 and the
complex conjugate form of this equation with the source at x1:

∆yĜ(ω,y,x2) +
ω2

c2(y)
Ĝ(ω,y,x2) = −δ(y − x2) , ∆yĜ(ω,y,x1) +

ω2

c2(y)
Ĝ(ω,y,x1) = −δ(y − x1) .

We multiply the first equation by Ĝ(ω,y,x1) and subtract the second equation multiplied by Ĝ(ω,y,x2):

∇y ·
[
Ĝ(ω,y,x1)∇yĜ(ω,y,x2)− Ĝ(ω,y,x2)∇yĜ(ω,y,x1)

]
= Ĝ(ω,y,x2)δ(y − x1)− Ĝ(ω,y,x1)δ(y − x2)

= Ĝ(ω,x1,x2)δ(y − x1)− Ĝ(ω,x1,x2)δ(y − x2) ,

where we have used the reciprocity property Ĝ(ω,x2,x1) = Ĝ(ω,x1,x2). We next integrate over the ball B(0, L)
and use the divergence theorem:∫

∂B(0,L)

n(y) ·
[
Ĝ(ω,y,x1)∇yĜ(ω,y,x2)− Ĝ(ω,y,x2)∇yĜ(ω,y,x1)

]
dS(y) = Ĝ(ω,x1,x2)− Ĝ(ω,x1,x2) ,



130 ESAIM: PROCEEDINGS

where n(y) is the unit outward normal to the ball B(0, L), which is n(y) = y/|y|. This relation can be viewed
as the second Green’s identity. The Green’s function also satisfies the Sommerfeld radiation condition

lim
|y|→∞

|y|
d−1
2

( y
|y|
· ∇y − i

ω

ce

)
Ĝ(ω,y,x1) = 0 ,

uniformly in all directions y/|y|. Under the conditions stated in the proposition, we can substitute i(ω/ce)Ĝ(ω,y,x2)
for n ·∇yĜ(ω,y,x2) in the surface integral over ∂B(0, L), and −i(ω/ce)Ĝ(ω,y,x1) for n ·∇yĜ(ω,y,x1), which
gives the desired result. Note that it is important that the medium be homogeneous in the exterior of the ball
B(0, D) in order be able to use the radiation condition. �

The right side of the Helmholtz-Kirchhoff identity (17) is related to the representation (13) of the cross
correlation function C(1) in the Fourier domain. Therefore, by substituting (17) into (13) we get the following
corollary.

Corollary 5.2. We assume that
1) the medium is homogeneous outside the ball B(0, D) with center 0 and radius D,
2) the sources are localized with a uniform density on the sphere ∂B(0, L) with center 0 and radius L.
If L� D, then for any x1,x2 ∈ B(0, D), we have (up to a multiplicative factor)

∂

∂τ
C(1)(τ,x1,x2) = F ε ∗G(τ,x1,x2)− F ε ∗G(−τ,x1,x2) . (18)

If in addition we have ε� 1, then F ε behaves approximately like a delta distribution acting on the Green’s
function and we get (2).

6. Travel time estimation with spatially localized noise sources in an open
medium

We study in this section the cross correlation function when the support of the sources is spatially limited
in an open non-dissipative medium. We assume that the fluctuations of the medium parameters are modeled
by a smooth background velocity profile c0(x), which is homogeneous outside a large sphere that encloses the
sensors and the sources. The outgoing time-harmonic Green’s function Ĝ0 of the medium is the solution of

∆xĜ0(ω,x,y) +
ω2

c20(x)
Ĝ0(ω,x,y) = −δ(x− y) , (19)

along with the radiation condition at infinity. When the background is homogeneous with constant wave speed
c0 then the homogeneous outgoing time-harmonic Green’s function is

Ĝ0(ω,x,y) =
eiω

|y−x|
c0

4π|y − x|
(20)

in three-dimensional space, and

Ĝ0(ω,x,y) =
i

4
H

(1)
0

(
ω
|y − x|
c0

)
(21)

in two-dimensional space. Here H(1)
0 is the zeroth order Hankel function of the first kind. Using the asymptotic

form of the Hankel function [1, formula 9.2.3], we see that the high-frequency behavior of the Green’s function
is related to the homogeneous medium travel time |x− y|/c0:

Ĝ0

(ω
ε
,x,y

)
∼ 1
|x− y|(d−1)/2

ei
ω
ε
|x−y|
c0
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x2

Figure 6. If the ray going through x1 and x2 (solid line) enters into the source region (left
figure), then the travel time can be estimated from the cross correlation. If this is not the case,
then the cross correlation does not have a peak at the travel time (right figure).

For a general smoothly varying background with propagation speed c0(x), the high-frequency behavior of the
Green’s function is also related to the travel time and it is given by the WKB (Wentzel-Kramers-Brillouin)
approximation [7]

Ĝ0

(ω
ε
,x,y

)
∼ a(x,y)ei

ω
ε τ(x,y) , (22)

which is valid when ε� 1. Here the coefficients a(x,y) and τ(x,y) are smooth except at x = y. The amplitude
a(x,y) satisfies a transport equation and the travel time τ(x,y) satisfies the eikonal equation. It is a symmetric
function τ(x,y) = τ(y,x) and it can be obtained from Fermat’s principle

τ(x,y) = inf
{
T s.t. ∃ (Xt)t∈[0,T ] ∈ C1 , X0 = x , XT = y ,

∣∣dXt

dt

∣∣ = c0(Xt)
}
. (23)

A curve (Xt)t∈[0,T ] that produces the minimum in (23) is a ray and it satisfies Hamilton’s equations (29-30).
For simplicity we assume that the background speed c0(x) is such that there is a unique ray joining any pair of
points (x,y) in the region of interest.

We can now describe the behavior of the cross correlation function between x1 and x2 when ε is small, with
and without directional energy flux from the sources.

Proposition 6.1. As ε tends to zero, the cross correlation C(1)(τ,x1,x2) has singular components if and only
if the ray going through x1 and x2 reaches into the source region, that is, into the support of the function θ. In
this case there are either one or two singular components at τ = ±τ(x1,x2).

More precisely, any ray going from the source region to x2 and then to x1 gives rise to a singular component
at τ = −τ(x1,x2). Rays going from the source region to x1 and then to x2 give rise to a singular component at
τ = τ(x1,x2).

This proposition explains why travel time estimation is bad when the ray joining x1 and x2 is roughly
perpendicular to the direction of the energy flux from the noise sources, as in the right of Figure 6. Its proof is
given in [20] and it is based on a stationary phase argument that we sketch out below.

Proof. Using (13) we have

C(1)(τ,x1,x2) =
1

2π

∫
dy
∫
dωĜ0

(ω
ε
,x1,y

)
Ĝ0

(ω
ε
,x2,y

)
e−i

ω
ε τ F̂ (ω)θ(y) .

First we use the WKB approximation (22) of the Green’s function and obtain

C(1)(τ,x1,x2) =
1

2π

∫
dyθ(y)

∫
dωF̂ (ω)a(x1,y)a(x2,y)ei

ω
ε T (y) ,
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where the rapid phase is
ωT (y) = ω[τ(x2,y)− τ(x1,y)− τ ] . (24)

By the stationary phase method [7], the dominant contribution comes from the stationary points (ω,y) of the
phase which satisfy

∂ω

(
ωT (y)

)
= 0 , ∇y

(
ωT (y)

)
= 0 .

This implies that
τ(y,x2)− τ(y,x1) = τ , ∇yτ(y,x2) = ∇yτ(y,x1) .

The second condition requires that x1 and x2 lie on the same side of a ray issuing from a point y. If the
points are aligned along the ray as y → x1 → x2, then the first condition is equivalent to τ = τ(x1,x2). If the
points are aligned along the ray as y→ x2 → x1, then the first condition is equivalent to τ = −τ(x1,x2). The
stationary points y contribute to the integral only if they are in the support of θ, which is the source region.
This completes the proof of the proposition. �

7. Emergence of the Green’s function for a localized distribution of sources
in an ergodic cavity

In the case of a spatially localized distribution of noise sources, directional diversity of the recorded fields
can be enhanced if there is sufficient scattering in the medium. An ergodic cavity with a homogeneous or
inhomogeneous interior is a good example (Figure 4, left): Even with a source distribution that has very limited
spatial support, the reverberations of the waves in the cavity generate interior fields with high directional
diversity [3, 14]. In this section we consider the damped wave equation( 1

Ta
+
∂

∂t

)2

u−∇x ·
[
c2(x)∇x

]
u = c2(x)nε(t,x) , (25)

in a bounded domain Ω with Dirichlet boundary conditions on ∂Ω. Semiclassical analysis is a very efficient
tool to study wave propagation in an ergodic cavity with a smoothly varying background velocity c(x). Note
that a wave equation with a self-adjoint operator is considered in (25) in order to simplify the algebra, but the
result could be extended to more general wave equations. The use of semi-classical analysis does not allow us
to assume that the noise sources are delta-correlated in space. It requires a source distribution with spatial
correlation. Therefore, we here assume that the spatial covariance function has the form

Γε(x,y) = θ
(x + y

2
,
x− y
ε

)
. (26)

Here the spatial correlation radius of the noise sources is assumed to be of the same order as the decoherence
time (ε), which is the regime in which time and space noise correlations contribute to the Green’s function
estimation at the same order of magnitude.

The covariance operator Θ : L2(Ω)→ L2(Ω) defined by

Θψ(x) =
∫

Γε(x,y)ψ(y)dy (27)

is a zero-order pseudodifferential operator with symbol θ̂(x, ξ)

Θ = Opε
[
θ̂(x, ξ)

]
,

where the Fourier transform θ̂(x, ξ) of the function z 7→ θ(x, z) is

θ̂(x, ξ) =
∫
θ(x, z)e−iξ·zdz ,
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and we have used the Weyl quantization Opε defined by

Opε
[
θ̂(x, ξ)

]
ψ(x) =

1
(2π)d

∫∫
θ̂
(x + y

2
, ξ
)
e
i
εξ·(x−y)ψ(y)dydξ . (28)

The main result of the papers [3, 14] is that it is possible to reconstruct the singular components of the
Green’s function in the ergodic case, up to a smoothing operator that depends on Γε and F ε. There are two
analytical facts that are used in this result:
1) Approximation of full wave propagation by classical ray dynamics (Egorov theorem): the singular (high-
frequency) components propagate along the rays (Xt, ξt) of geometric optics defined by

dXt

dt
= c2(Xt)ξt , X0(x, ξ) = x , (29)

dξt
dt

= −1
2
∇[c2](Xt)|ξt|2 , ξ0(x, ξ) = ξ , (30)

and with specular reflection at the boundary ∂Ω.
2) Ergodicity of the ray dynamics in the cavity Ω: This means that, starting from almost any point x and
almost any direction ξ, the ray (Xt, ξt) visits all of phase space.

Proposition 7.1. If c ∈ W 4,∞(Ω), θ̂ is smooth, bounded, and integrable, then ∂τC
(1)(τ,x,y) is the kernel of

the operator

e−
|τ|
TaKε

θ [F ε ∗G(τ)− F ε ∗G(−τ)] +Rε(τ) +RTa(τ) , (31)

for any τ > 0, where G(τ) is the Green’s function operator with kernel G(τ,x,y) and Kε
θ is the smoothing

operator

Kε
θ = Opε

[
k̂θ
(
c(x)ξ

)]
, k̂θ(ξ̃) =

∫
Ω
dzc(z)−d

∫
∂B(0,1)

dS(η)θ̂
(
z, |ξ̃| η

c(z)

)∫
Ω
c(z)−ddz

∫
∂B(0,1)

dS(η)
. (32)

The remainder Rε(τ) is determined by the error in the semiclassical approximation and it is small if ε is small.
The remainder RTa(τ) is determined by the rate of convergence of the ergodic theorem for the function θ̂ of
the classical Hamiltonian flow. If denote by Terg the characteristic convergence time of 1

t

∫ t
0
θ̂(Xs, ξs)ds to its

ergodic limit, then RTa(τ) is small if Ta � Terg.

The symbol of the smoothing operator Kε
θ is k̂θ(c(x)ξ). The form of the symbol of Kε

θ is obtained by
averaging the symbol θ̂(x, ξ) of the covariance operator Θ over the Liouville measure on surfaces of constant
energy. This makes sense intuitively since, in the semiclassical limit, we can expect the symbol of Kε

θ to be
close to the one of Θ transported by the classical Hamiltonian flow, and this converges to (32) by the ergodic
theorem. This shows that the support of the smoothing operator Kε

θ has an effective radius that is of the order
of the correlation radius of the sources. To summarize, if Terg � Ta and ε� 1, then detecting the first peak of
τ 7→ C(1)(τ,x1,x2) gives an estimate of the travel time from x1 to x2. The accuracy of this estimate depends
on the correlation radius and the decoherence time of the noise sources.

8. Iterated cross correlations for travel time estimation in a weakly
scattering medium

For travel time tomography to be successful it is necessary to have good estimates of the travel times between
pairs of sensors that cover well the region of interest. When the noise sources are spatially localized and there
is a strong directional energy flux at the sensors, then travel time estimates will be poor for sensor pairs with
axis in directions perpendicular to this flux. In this section we show that it is possible to exploit scattering from
random inhomogeneities so as to enhance travel time estimation.
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We consider distributions of noise sources that are spatially localized and media with scattering that is not
strong enough for equipartition of the fields at the sensors [36]. Therefore, even with scattering, the signals
depend strongly on the spatial localization of the noise sources, which affects the quality of travel time estimation.
However, the coda (i.e. the tails) of the cross correlations are generated by scattered waves, which have more
directional diversity than the direct waves from the noise sources. By cross correlating the coda of the cross
correlations, which produces fourth-order cross correlations, it is possible to exploit scattered waves and their
enhanced directional diversity. Campillo and Stehly [12] suggest a way to estimate the Green’s function between
x1 and x2 as follows.
1) Calculate the cross correlations between x1 and xa,j and between x2 and xa,j for a large number N of
auxiliary sensors (xa,j)j=1,...,N that are distributed over the medium

CT (τ,xa,j ,xl) =
1
T

∫ T

0

u(t,xa,j)u(t+ τ,xl)dt , l = 1, 2 .

2) Cross correlate the coda of these cross correlations and sum them over all auxiliary sensors to form the coda
cross correlation between x1 and x2:

CT ′,T (τ,x1,x2) =
N∑
j=1

∫
[−T ′,−Tcoda]∪[Tcoda,T ′]

CT (τ ′,xa,j ,x1)CT (τ ′ + τ,xa,j ,x2)dτ ′ . (33)

Here the time Tcoda is chosen so as to eliminate the coherent part of CT . In general, Tcoda depends on j and
should be chosen larger than max(τ(xa,j ,x1), τ(xa,j ,x2)).

Using the stationary phase method we have shown in [20] that the algorithm proposed by Campillo and
Stehly succeeds in exploiting the enhanced directivity of scattered waves. We have shown in particular that the
coda cross correlation CT ′,T , defined by (33), has singular components at the travel time between the sensors
even in the unfavorable case in which the ray joining x1 and x2 does not reach into the source region, as
discussed in Section 6. This result is presented in Proposition 8.2 below. Its proof requires to specify a model
for the inhomogeneous medium. A simple, single-scattering model is sufficient for this purpose. We assume that
the medium has a smoothly varying background speed c0(x), which we want to image, and a large collection
of point scatterers at (zs,j)j≥1. Their reflectivities σj are assumed to be independent random variables with
zero-mean and with small variance σ2. In the Born (single-scattering) approximation the full Green’s function
at scaled high frequencies is given by

Ĝ
(ω
ε
,x,y

)
= Ĝ0

(ω
ε
,x,y

)
+ Ĝ1

(ω
ε
,x,y

)
, (34)

where Ĝ0 is the Green’s function (19) of the background medium and Ĝ1 is given by

Ĝ1

(ω
ε
,x,y

)
= ω2

∑
j

σjĜ0

(ω
ε
,x, zs,j

)
Ĝ0

(ω
ε
, zs,j ,y

)
. (35)

We also assume that:
1) The auxiliary sensors at (xa,j)j=1,...,N are distributed with a continuum density χa(xa). This means that we
can approximate sums over the auxiliary sensors by integrals with density χa:∑

j

ψ(xa,j) '
∫
dxaχa(xa)ψ(xa) , (36)

for any real-valued test function ψ. The support of the function χa defines the support of the region of the
auxiliary sensors.
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Figure 7. When noise sources (circles in the left figure) are spatially localized, we form cross
correlations between the recorded signals at x1 and x2 (solid triangles) and those at auxiliary
sensors at xa,j (empty triangles). We then compute cross correlations of the tails of these
correlations (here, Tcoda = 250) and sum over the auxiliary sensors. This gives the coda cross
correlation (33) from which the travel time between x1 and x2 can be better estimated, as
indicated in the schematic figure on the right.

2) The scatterers at (zs,j)j≥1 are distributed with a continuum density χs(zs). The support of the function χs

defines the support of the scattering region.
We distinguish two components in the cross correlation function C(1) defined by (11):

1) The coherent component C(1)
coh is associated with the direct waves that have not been scattered. From the

representation (34) of the Green’s function, the coherent component C(1)
coh of the cross correlation function is

given by

C
(1)
coh(τ,x1,x2) =

∫
dyθ(y)

∫
dsds′F ε(s′)G0(s,x1,y)G0(τ + s+ s′,x2,y) ,

where G0 is the Green’s function of the smoothly varying background.
2) The remaining coda component C(1)

coda, which is the contribution of the waves scattered by the inhomogeneities:

C
(1)
coda(τ,x1,x2) = C(1)(τ,x1,x2)− C(1)

coh(τ,x1,x2) . (37)

We consider first the coherent fourth-order cross correlation function

C(2)(τ,x1,x2) = lim
T ′→∞

∫ T ′

−T ′
dτ ′
∑
j

C
(1)
coh(τ ′,xa,j ,x1)C(1)

coh(τ ′ + τ,xa,j ,x2) .

The following proposition is analogous to Proposition 6.1.

Proposition 8.1. The cross correlation C(2)(τ,x1,x2) has singular components if and only if the ray going
through x1 and x2 extends into the source region. If this is the case, then there are one or two singular
components at τ = ±τ(x1,x2).

We see, therefore, that there is no gain in using the function C(2) in place of C(1) for travel time estimation,
the singular component of the coherent fourth-order cross correlation C(2) has the same properties as the one
of the standard cross correlation C(1). We now consider the coda cross correlation given by

C(3)(τ,x1,x2) = lim
T ′→∞

∫ T ′

−T ′
dτ ′
∑
j

C
(1)
coda(τ ′,xa,j ,x1)C(1)

coda(τ ′ + τ,xa,j ,x2) .



136 ESAIM: PROCEEDINGS

x1

x2
ray
source
scatterer
auxiliary sensor
sensor

Figure 8. Schematic of a configuration of noise sources (circles), scatterers (squares), and
auxiliary sensors (empty triangles) that give enhanced travel time estimation between x1 and
x2 (solid triangles). First, there are scatterers along the ray going through x1 and x2 (but
the scatterers along the segment between x1 and x2 play no role). Second, there are auxiliary
sensors along rays going from the source region into the scatterer region.

Proposition 8.2. There are two (and only two) singular components in C(3), at times τ = ±τ(x1,x2), if the
two following conditions hold (see Figure 8):
1) The ray going through x1 and x2 (excluding the segment between x1 and x2) reaches into the scattering region
(the support of χs). The scatterers along this ray are the basic ones for enhanced travel time estimation.
2) Rays going from the source region (the support of the function θ) to the basic scatterers reach into the
observation region (the support of the function χa).

The important point here is that it is not required that the ray joining the sensors x1 and x2 should extend
into the source region as in Propositions 6.1 and 8.1. Therefore the configurations for which the coda cross
correlation C(3) has a singular component at the travel time between x1 and x2 are much more general than
the ones for which the standard cross correlation has a singular component. Propositions 8.1 and 8.2 show that
there is no additional information about the travel time in the coherent fourth-order cross correlation, but that
there is such information in the coda (fourth-order) cross correlation. Therefore, the coda cross correlation is
the one that should be used. The full fourth-order cross correlation function, obtained by cross-correlating the
full cross correlation functions C(1) = C

(1)
coh + C

(1)
coda, is the sum of the coherent fourth-order cross correlation

C(2), the coda fourth-order cross correlation C(3), and cross correlations between the coherent C(1)
coh and the

coda C
(1)
coda. Using again the stationary phase method, we can see that these cross correlations have singular

components only at τ = ±τ(x1,x2), and only if the ray joining x1 and x2 extends into the source region.
Therefore, while the interesting singular component of the coda fourth-order cross correlation is present in the
full fourth-order cross correlation, it is buried in many other uninteresting terms, especially when the scattered
waves are much weaker than the direct waves. That is why it is much better, in terms of the signal-to-noise
ratio, to use only the coda fourth-order cross correlations.
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