
ESAIM: PROCEEDINGS, April 2012, Vol. 36, p. 121-125
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SYMBOLIC DYNAMICS AND LYAPUNOV EXPONENTS FOR LOZI MAPS
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Abstract. Building on the kneading theory for Lozi maps introduced by Yutaka Ishii, in 1997, we
introduce a symbolic method to compute its largest Lyapunov exponent. We use this method to study
the behavior of the largest Lyapunov exponent for the set of points whose forward and backward orbits
remain bounded, and find the maximum value that the largest Lyapunov exponent can assume.
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Résumé. Nous étudions ici une nouvelle méthode pour calculer le plus grand exposant de Liapounov
pour la famille des applications de Lozi, en utilisant la théorie du kneading pour ces applications,
introduite par Yutaka Ishii. Avec cette méthode, on trouve la valeur maximale que cet exposant de
Liapounov peut avoir dans la region des paramètres sur laquelle l’attracteur de l’ application est fractal.

Mots clefs. Transformation itérative, Transformation de Lozi, Dynamique symbolique, Exposant de
Lyapunov.

Introduction

The identification of chaos is an important problem that can be solved by measuring the largest Lyapunov
exponent of a dynamical system. Indeed, since the Lyapunov exponents quantify the divergence of initially close
state-space trajectories, we can use them to estimate the amount of chaos of the dynamics. In the following,
we introduce a method to compute the largest Lyapunov exponent for the family of plane maps, known as Lozi
maps, from the symbolic dynamics of its attractor.

In 1978, René Lozi [5] pointed out numerically that a certain piecewise linear plane map displayed a strange
attractor. Since then, we call the two-parameter family of piecewise affine homeomorphisms of the plane
Lab : R2 → R2 defined by

Lab (x, y) = (1− a |x|+ y, bx) , a, b ∈ R, b 6= 0, (1)

the Lozi family of maps. It was for this family of maps that Yataka Ishii [3] generalized Milnor and Thurston’s
kneading theory with the introduction of the appropriate symbolic dynamics, from which we are able to compute
the largest Lyapunov exponent of the map.
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1. Lozi maps kneading theory

Consider a Lozi map L = Lab and let us denote by ALab
its attractor. In 1992, Z. Liu, H. Xie, Z. Zhu, and

Q. Lu [6] showed that, for parameters values (a, b) satisfying
0 < b < 1 ;

a > b+ 1 ;

2a > 4− b ,

(2)

the map Lab has a strange attractor; let us denote by 4L the corresponding region of the parameter space.
From now on, we assume that the parameters (a, b) satisfy conditions (2).
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Figure 1. The region 4L of parameter values for which the map Lab has a strange attractor.

In 1997, Yutaka Ishii [3] developed a kneading theory for Lozi maps, as follows: to any point X ∈ ALab
, one

can associate a bi-infinite symbolic sequence πL (X) given by

πL (X) ≡ · · · ε−3ε−2ε−1 · ε0ε1ε2 · · · , (3)

where the symbol εi is related with the x-relative position of the iterate i of X:

εi =

{
−1 if Li

ab (X)x < 0,

+1 if Li
ab (X)x > 0,

(4)

denoting by Li
ab (X)x the x-component of the point Li

ab (X). In his paper, Ishii used a different symbol, ∗, to
code the case in which the point Li

ab (X) belongs to the vertical axis, i.e., if Li
ab (X)x = 0, then εi = ∗. This new

symbol plays a double role, in the sense that one can substitute it either by −1 or by +1. This ambiguity makes
πL a multi-valued map and we say that any element of πL (X) is an itinerary of the point X. The subsequence
ε0ε1ε2 · · · is often called the forward itinerary of the point X.

As proved by Ishii, the map πL conjugates the action of the Lozi map on the attractor ALab
and the shift

map on a subset of {−1, +1}Z. In what follows, we will compute the largest Lyapounov eigenvalue associated
with ALab

from the symbolic code of the forward orbit of the same point.
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From some simple algebraic computations, one can conclude that, if both conditions b < a+ 1 and b > 1− a
are satisfied, then the Lozi map Lab has two fixed points. Let us denote by A the first quadrant fixed point,

A =

(
1

a+ 1− b
,

b

a+ 1− b

)
,

and consider the point I ∈ R2 obtained from the intersection of the unstable manifold of the fixed point A with
the horizontal axis. An easy computation gives us its expression,

I =

(
2 + a+

√
a2 + 4b

2(1 + a− b)
, 0

)
,

and it is not difficult to infere that this point I belongs to the attractor ALab
, being also its rightmost point.

Next, we present our main result, which will allow us to compute the largest Lyapunov exponent associated
with ALab

using a forward itinerary of this point I.

2. Symbolic dynamics and Lyapunov exponents

Lyapunov exponents describe the behavior of vectors in the tangent space of the phase space and are defined
from the Jacobian matrix, Jab = J(Lab), of the map, see [7]. In this case, we have

Jab =

[
∓a 1
b 0

]
.

Given a Lozi map Lab, let Mab = M(Lab) be the matrix defined by

Mab = lim
n→+∞

(
J
(n)
ab ×

(
J
(n)
ab

)T)1/2n

,

where by J
(n)
ab one denotes the Jacobian matrix of the nth iterate of Lab.

Definition 2.1. Denoting by (Λab)i the eigenvalues of the matrix Mab, we have that the Lyapunov exponents
(λab)1 < (λab)2, associated with the Lozi attractor ALab

, are given by

(λab)i = log(Λab)i,

with i = 1, 2.

Then, we have the following result.

Theorem 2.2. Given a Lozi map Lab, the largest Lyapunov exponent λ = (λab)2, associated with its attractor
ALab

, is given by

λ = lim
n→+∞

1

2n
log
(

(An)
2

+ (An+1)
2

+ (Bn)
2

+ (Bn+1)
2
)
,

with  A0 = 0,
A1 = b,
An+1 = (−εna)An + bAn−1

(5)

and  B0 = 1,
B1 = −ε0a,
Bn+1 = (−εna)Bn + bBn−1.

(6)
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Proof. Let

T (x) =

[
∓a 1
b 0

](
1

x

)
=
∓a+ x

b

be a linear fractional transformation and let G (x) = 1/T (x). Then, the matrix J
(n)
ab = J

(n−1)
ab J

(n−2)
ab · · · J (0)

ab is
given by the nth composition G (G (G (· · ·G (x)))).

Next, let us consider the continuous fraction defined by G (G (G (· · ·G (x)))). If one denotes the successive
numerators and denominators of the fraction by An and Bn, respectively, then the fundamental recurrence
formulas are given by  A0 = 0,

A1 = b,
An+1 = (−εna)An + bAn−1

and  B0 = 1,
B1 = −ε0a,
Bn+1 = (−εna)Bn + bBn−1.

Therefore,

J
(n−1)
ab J

(n−2)
ab · · · J (0)

ab =

[
Bn+1 Bn

An+1 An

]
and the eigenvalues of Mab verify, for i = 1, 2,

(Λab)
2
i − (Λab)i trMab + detMab = 0,

where
trMab = lim

n→+∞
(An)

2
+ (An+1)

2
+ (Bn)

2
+ (Bn+1)

2
.

Since we assumed that 0 < b < 1, we have detMab = 0 and the result follows immediately. �

With this result, we claim that the largest Lyapounov exponent associated with the attractor ALab
can be

computed solely from the parameters (a, b) and the forward itinerary of a point belonging to the attractor.
Having this in mind, next we will compute the Lyapounov exponent λab for a certain line of the parameter
region 4L, for which the forward itinerary of the point I is known.

Theorem 2.3. Consider a Lozi map Lab with parameter values (a, b) from the right boundary of 4L, i.e., the
line b = 4− 2a. Then, the largest Lyapunov exponent associated with the attractor ALab

is given by

λab = log(2).

Proof. As we know, for parameter values (a, b) belonging to the boundary line b = 4− 2a, the forward itinerary
of the point I is the symbolic sequence +1− 1∞. Thus, from (5), we have that, for n ≥ 2,

An−1

An
= −a

b
+

1
b

−a
b +

1
b

− a
b +

. . .

As one can easily see, this continued fraction expansion is the solution of the second order equation bx2+ax−1 =
0 given by

x =
−a+

√
a2 + 4b

2b
.

Thus, for (a, b) belonging to the line b = 4− 2a, we have x = 1
2 , and

An = 2An−1.
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In a similar way, we can conclude that Bn = 2Bn−1, for n ≥ 1. Therefore,

(An)
2

+ (An+1)
2

+ (Bn)
2

+ (Bn+1)
2

= 5× 22n
(
b

2

)2

+ 5× 22n =

=
(

5 (2− a)
2

+ 5
)

22n,

and, finally,

λab = lim
n→+∞

1

2n
(log

(
(5(2− a)2 + 5)

)
+ 2n log(2)) = log(2).
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