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ON THE HELIX EQUATION
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Abstract. This paper is devoted to the helices processes, i.e. the solutions H : R×Ω→ Rd, (t, ω) 7→
H(t, ω) of the helix equation

H(0, ω) = 0; H(s + t, ω) = H(s,Φ(t, ω)) + H(t, ω)

where Φ : R× Ω→ Ω, (t, ω) 7→ Φ(t, ω) is a dynamical system on a measurable space (Ω,F).
More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation.
For the last case, the Wiener helix plays a fundamental role. Moreover, some relations with the cocycle
equation defined by Φ, are investigated.
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Résumé. Ce papier est consacré aux hélices, c’est-à-dire les solutions H : R×Ω→ Rd, (t, ω) 7→ H(t, ω)
de l’équation fonctionnelle

H(0, ω) = 0; H(s + t, ω) = H(s,Φ(t, ω)) + H(t, ω)

où Φ : R× Ω→ Ω, (t, ω) 7→ Φ(t, ω) est un système dynamique défini sur un espace mesurable (Ω,F).
Plus présisément, nous déterminons d’abord les hélices dominées puis nous caractérisons les hélices non
différentiables. Dans ce dernier cas, l’hélice de Wiener joue un rôle important. Nous précisons aussi
quelques relations des hélices avec les cocycles définis par Φ.

Mots clefs: Equation de translation, Equation d’hélice, Héelice de Wiener, Cocycle.

Introduction

Let (Ω,F) be a measurable space and let Φ : R×Ω→ Ω be a dynamical system on (Ω,F), that is Φ satisfies
the translation equation

Φ(0, ω) = ω, Φ(s+ t, ω) = Φ(s,Φ(t, ω)).
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A Φ-helix (or helix over Φ) on Rd, is a mapping H : R× Ω→ Rd which satisfies the helix equation

H(0, ω) = 0, H(s+ t, ω) = H(s,Φ(t, ω)) +H(t, ω).

An helix is always denoted by (Ω,F ,Φ, H).
This notion was first introduced by Kolmogorov [7] in the framework of stochastic integrals and stochastic
differential equations (cf. also [2] and the related references, for more details).

The aim of this paper, is to investigate helices as functional equations.
In the first part, we suppose that H is dominated, i.e. there exists two constants a ≥ 0, b ≥ 0 such that (|.|
denotes a norm on Rd)

|Ht(ω)| ≤ at+ b; (ω ∈ Ω, t ≥ 0)

Using a result in [6], we prove that H is a sum of a closed Φ-helix and a differentiable one, i.e. there exists
g, h : Ω→ Rd measurable such that s 7→ g(Φ(s, ω)) is locally integrable and

H(t, ω) = h(ω)− h(Φtω) +

∫ t

0

g(Φ(s, ω))ds.

However, the Wiener helix denoted by (Ω0,F0,Θ,W ) is neither closed nor differentiable (cf. 3.1 below for more
details). This is why, we investigate the general case in the second part of this paper.
We prove first that, if H separates points of Ω and generates F , then the associated dynamical system is
uniquely determined.
Then we prove that, each helix (Ω,F ,Φ, H) is conjugate to the Wiener helix (Ω0,F0,Θ,W ), i.e there exists a
mapping κ : Ω→ Ω0 such that

κ(Φ(t, ω)) = Θ(t, κ(ω)); H(t, ω) = W (t, κ(ω)).

A Φ-helix H is said to be connecting if, for all x, y ∈ Rd there exists ω ∈ Ω, s, t ∈ R such that x = H(s, ω)
and y = H(t, ω). After giving some examples of connecting and non connecting helices, we prove the following
result: The image of a connecting Φ-helix by a Borel function f : Rd → Rn, is a Φ-helix if and only if f is linear.
The proof is in fact a consequence of the well known results about the Cauchy equation. We close the paper by
some classical relations between helices and cocycles. Moreover, we introduce the notion of bi-helix.
This paper is a continuation of our paper [5] which is devoted to homogeneous process instead of helices processes,
and some general notions introduced here, are picked from [5].

1. Helix processes

In this paper, we denote by T := Z or R. If T = Z, we take B := P(Z) the σ-algebra of all subsets of Z.
If T = R, we take B := B(R) the Borel σ-algebra of R. The space Rd, d ≥ 1 is also endowed with its Borel
σ-algebra Bd.
Let (Ω,F) be a measurable space. Each mapping Y : Ω → Rd which is (F ,Bd)-measurable, is called random
vector.
A stochastic process over (Ω,F) with state space Rd is a mapping X : T × Ω → Rd such that, for each t ∈ T,
the map ω 7→ X(t, ω) is a random vector.
The product space T × Ω is endowed with the product σ-algebra B ⊗ F . If X is (B ⊗ F ,Bd)-measurable then
the stochastic process is said to be measurable (Notice that if T = Z, each stochastic process is measurable).
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1.1. Dynamical system

A Dynamical System (notation DS) on (Ω,F), is a map Φ : T× Ω→ Ω, (t, ω) 7→ Φ(t, ω) such that

(1) ω 7→ Φ(t, ω) is measurable for each t ∈ T.
(2) Φ satisfies the translation equation, i.e. for all ω ∈ Ω; t, s ∈ T

Φ(0, ω) = ω; Φ(s+ t, ω) = Φ(s,Φ(t, ω)).

If (t, ω) 7→ Φ(t, ω) is (B ⊗ F ,F)-measurable, the DS si said to be measurable.

If we put Φt := Φ(t, .) then the DS Φ is identified with a family Φ := (Φt)t∈T of measurable transformations
Φt : Ω→ Ω such that (IΩ denotes the identity operator on Ω)

Φ0 = IΩ; Φs+t = Φs ◦ Φt; (s, t ∈ T). (1)

The DS will be sometimes denoted by (Ω,F ,Φ).

Let (Ω,F ,Φ) be a DS. A measurable subset Γ of Ω is said to be Φ-invariant if Φt(Γ) ⊂ Γ for each t ∈ T. In
this case, the restriction of Φ to T× Γ defines a so called (measurable) sub-dynamical system of (Ω,F ,Φ).

Let (Ω,F ,Φ) and (Υ,G,Ψ) be two DS. A measurable map f : Ω→ Υ is called SD-morphism if

f(Φt(ω)) = Ψt(f(ω)); (t ∈ T, ω ∈ Ω). (2)

If f is one-to-one and if f and f−1 are both SD-morphisms, we say that f is an SD-isomorphism. In this case,
the DS (Ω,F ,Φ) and (Υ,G,Ψ) will be conjugate (cf. [4] for example).

The following Lemma will be used later. The proof is classical (cf. [4] for example) and it is omitted.

Lemma 1 Let (Ω,F ,Φ) and (Υ,G,Ψ) be two DS and let f : Ω → Υ be an injective SD- morphism. Then
the restriction of Ψ to f(Ω) defines a sub-dynamical system of (Υ,G,Ψ).

1.2. Helix

Let (Ω,F ,Φ) be a dynamical system. A Φ-helix on Rd, is a mapping H : T× Ω→ Rd such that

(1) ω 7→ H(t, ω) is measurable for each t ∈ T.
(2) H satisfies the helix equation, i.e. for all ω ∈ Ω; t, s ∈ T

H(0, ω) = 0; H(s+ t, ω) = H(s,Φ(t, ω)) +H(t, ω).

If (t, ω) 7→ H(t, ω) is (B ⊗ F ,Bd)-measurable, the Φ-helix H is said to be measurable.

If we put Ht := H(t, .), then the Φ-helix H is identified to a stochastic process H := (Ht)t∈T such that

H0 = 0, Hs+t = Hs ◦ Φt +Ht (s, t ∈ T). (3)

Remarks 1

(1) If U, V are two Φ-helices and if a, b ∈ R then, aU + bV is a Φ-helix.
(2) If we write Ht = (H1

t , ...,H
d
t ), then H = (Ht)t∈T is a Φ-helix on Rd if and only if, for each 1 ≤ k ≤ d,

Hk = (Hk
t )t∈T is a real Φ-helix.

(3) Let (Ω,F ,Φ) and (Υ,G,Ψ) be two DS and let f : Ω → Υ be an SD- morphism. If H = (Ht)t∈T is a
Ψ-helix, then H ◦ f := (Ht ◦ f)t∈T is a Φ-helix. H ◦ f is said to be conjugate to H.
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(4) In particular, if (Ω,F ,Φ) is a DS and if Γ is a Φ-invariant subset of Ω, then the restriction to T× Γ of
each helix, is an helix for the associated sub-dynamical system.

(5) Let H be a Φ-helix. From the helix equation (3), we deduce that

Ht = −H−t ◦ Φt; (t ∈ T). (4)

This relation will be used as the following: If Ht is given for t ≥ 0, it will completely determined for all
t ∈ T.

1.3. The discrete case

If T = Z then Φ := (Φt)t∈Z is generated by φ := Φ1. In this case, an helix H is considered as a φ-helix.
Moreover, the helix equation (3) is equivalent to the iteration equation

H0 = 0; Hn+1 = H1 ◦ φn +Hn; (n ∈ Z). (5)

Let h := H1. By an easy induction in (5), we obtain

Hn =



n−1∑
k=0

h ◦ φk ; (n ≥ 1)

0 ; (n = 0)

−
n∑

k=1

h ◦ φ−k ; (n ≤ −1).

(6)

Conversely, for any random vector h : Ω→ Rd, formula (6) defines a measurable φ-helix.

2. Dominated helices

2.1. Closed helices

Let Φ be a DS defined on a measurable space (Ω,F) and let h : Ω→ Rd be random vector, then

Ht(ω) := h(ω)− h(Φtω); (t ∈ R, ω ∈ Ω) (7)

defines a Φ-helix. Such a Φ-helix is said to be closed.
Conversely, we have the following partial result:
Let H := (Ht)t∈R be a real Φ-helix such that

(t ≥ 0) ⇒ (Ht(ω) ≥ 0 for each ω ∈ Ω). (8)

Note first that by (4), the condition (8) is equivalent to

(t ≤ 0) ⇒ (Ht(ω) ≤ 0 for each ω ∈ Ω). (9)

In this case, H(., ω) : [0,∞[→ R is increasing. Letting s→ +∞ in (3), we obtain

supHs(ω) = supHs(Φtω) +Ht(ω).

Hence H will be closed if

h(ω) := supHs(ω) <∞; (ω ∈ Ω). (10)
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This result can be easily generalized to a Φ-helix H on Rd such that each component of H satisfies (8) and (10).

Remark 2 Suppose that (7) is verified for t ≥ 0 and for some random vector h. Then for t ≤ 0, (4) and (7)
imply that

Ht(ω) = −H−t(Φtω) = −[h(Φtω)− h(Φ−tΦtω)] = h(ω)− h(Φtω).

Hence (7) is satisfied for the same h and for all t ∈ R.

2.2. Differentiable helices

Let Φ be a DS defined on a measurable space (Ω,F) and g : Ω→ Rd a random vector such that t 7→ g(Φt(ω))
is locally integrable for each ω ∈ Ω, then

Ht(ω) :=

∫ t

0

g(Φr(ω)) dr; (t ∈ R, ω ∈ Ω) (11)

defines a so called differentiable Φ-helix.

Remark 3 Suppose that (11) is true for t ≥ 0 and for some random vector g. Let t ≤ 0. Using (1), (4) and
(11) we deduce

Ht(ω) = −H−t(Φtω) = −[

∫ t

0

g(ΦrΦtω)dr]

= −[

∫ t

0

g(Φr+tω)dr] =

∫ t

0

g(Φr(ω))dr.

In the same way, (11) is also satisfied for the same g and for all t ∈ R.

Definition 1 A Φ-helix H := (Ht)t∈R is said to be dominated if there exists two constants a ≥ 0, b ≥ 0 such
that (|.| denotes a norm on Rd)

|Ht(ω)| ≤ at+ b; (ω ∈ Ω, t ≥ 0). (12)

Theorem 1 Let H : R × Ω → R be a dominated Φ-helix. Then H is the sum of a closed Φ-helix and a
differentiable one.

Proof. Put

Lt(ω) := exp(Ht(ω)); (t ≥ 0, ω ∈ Ω). (13)

Then the helix equation becomes

Ls+t(ω) = Lt(ω) · Ls(Φtω); (s, t ≥ 0, ω ∈ Ω). (14)

Hence L is a real cocycle in the sens of [6] (Definition 1.3). Moreover, (12) implies that L is dominated in the
sens of [6] (Definition 1.5). Consequently, there exists q : Ω→]0,∞[; f : Ω→ R such that t 7→ f(Φtω) is locally
integrable and

Lt(ω) =
q(Φtω)

q(ω)
· exp(

∫ t

0

f(Φsω)ds); (t ≥ 0, ω ∈ Ω). (15)
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This formula is proved by the first author in [6] (cf. Proposition 2.2).

Let Ut(ω) := ln(q(Φtω))− ln(q(ω)) and Vt(ω) :=
∫ t

0
f(Φsω)ds for t ≥ 0 and ω ∈ Ω. By (13) and (15) we have

Ht(ω) = Ut(ω) + Vt(ω); (ω ∈ Ω, t ≥ 0). (16)

However, using (4), Remark 2 and Remark 3, the preceding formula (16) holds for all t ∈ R. Therefore, U is a
closed Φ-helix, V is a differentiable Φ-helix and H = U + V .

Corollary 1 Each dominated Φ-helix H : R×Ω→ Rd is a sum of a closed Φ-helix and a differentiable one.

Proof. We write Ht = (H1
t , . . . ,H

d
t ). Since H is dominated, then each of its components is also a dominated

real Φ-helix (cf. Remark 1.2). We conclude by the preceding result.

3. Non-differentiable helices

Let (Ω,F) be a measurable space. If X := (Xt)t∈R is a stochastic process on Rd, we denote by σ(Xt : t ∈ R)
the smallest σ-algebra on Ω for which each Xt is measurable. If F = σ(Xt : t ∈ R), we say that X generates F .
The stochastic process X separates the points of Ω, if for ω1, ω2 ∈ Ω, the equality Xt(ω1) = Xt(ω2) for each
t ∈ R implies that ω1 = ω2.
We give first a little more general definition of helix.

Definition 2 An helix over (Ω,F) is a stochastic process on Rd such that there exists a family Φ := (Φt)t∈R
of measurable transformations Φt : Ω→ Ω satisfying (3), i.e.

H0 = 0, Hs+t = Hs ◦ Φt +Ht (s, t ∈ R). (17)

Under some natural assumptions, the family of transformations Φ := (Φt)t∈R which arises in (17), is in fact a
dynamical system. This is the subject of the next result.

Proposition 1 Let H := (Ht)t∈R be an helix which separates points of Ω and generates F . Then, there
exists a unique DS Φ such that (17) holds.

Proof. Since H is an helix process, then there exists Φ such that (17) holds. Moreover, Φ is uniquely
determined because H is separating. From (17), we have Hs = HsΦ0 for each s ∈ R, hence Φ0 = IΩ since H
separates the points of Ω. Let r, s, t ∈ R; by iteration of (17), we have

HroΦsoΦt = (HroΦs)oΦt

= (Hr+s −Hs)oΦt

= Hr+sΦt −HsoΦt

= Hr+s+t −Ht −Hs+t +Ht

= HrΦs+t.

This implies the group property (1) since H separates the points of Ω.
Let t, t1 < ... < tn ∈ R;A1, ..., An ∈ Bd. From the helix relation (17), we have (using the notation [Ht ∈ A] :=
{ω ∈ Ω : Ht(ω) ∈ A})

Φ−t[Ht1 ∈ A1, ...,Htn ∈ An] = [(Ht1+t −Ht) ∈ A1, ..., (Htn+t −Ht) ∈ An]

which is in F since F = σ(Hs : s ∈ R). Therefore each Φt is measurable.
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3.1. Wiener helix

Let Ω0 := {u : R→ Rd such that u(0) = 0}.
For each t ∈ R, let Wt : Ω0 → Rd defined by

Wt(u) = u(t); (t ∈ R, u ∈ Ω0) (18)

and let F0 = σ(Wt : t ∈ R). Obviously W := (Wt)t∈R is a stochastic process over (Ω0,F0) with state space Rd.

For each t ∈ R define Θt : Ω0 → Ω0 by the Formula

Θtu(s) := u(s+ t)− u(t); (u ∈ Ω0, s ∈ R). (19)

It can be easily verified that (Ω0,F0,Θ) is a dynamical system, called Wiener shift. Moreover, from (18) and
(19), we obtain

Ws+t(u) = Ws(Θtu) +Wt(u); (u ∈ Ω0, s, t ∈ R). (20)

In other words W is a Θ-helix, called also Wiener helix.
By the well definitions, W separates the points of Ω0 and generates F0. The following result is also a trivial
consequence of Proposition 1.

Corollary 2 The Wiener shift Θ is the unique DS for which W is an helix.

Remarks 4

(1) Let d = 1 and ω = IR the identity on R. then for each t ∈ R, Θtω = IR by the well definition of Θ.
Now, if there exists h : Ω0 → R measurable such that

Wtω = h(ω)− h(Θtω); (t ∈ R)

then we must have t = 0 by definition of Wt.
Hence, the Wiener helix can not be closed.

(2) From the definition of the Wiener helix (Wt) (relation (18)), we have

1

s
(Wt+sω −Wtω) =

1

s
(ω(t+ s)− ω(t)).

Hence, the Wiener helix can not be differentiable (It suffices to take any non-differentiable function
ω ∈ Ω0).

(3) In fact, it is known that (Wt) is almost nowhere differentiable (cf. [2] for example).

3.2. Coordinates-map

Let (Ω,F) be a measurable space and let H := (Ht)t∈R be a stochastic process on (Ω,F) such that H0(ω) = 0
for each ω ∈ Ω. The coordinates-map of H, is defined by

κ(ω) := (Ht(ω))t∈R; (ω ∈ Ω). (21)

Notice that κ transforms Ω on Ω0. Moreover, by the well definitions of κ and W , we have

Ht(ω) = Wt(κ(ω)); (t ∈ R, ω ∈ Ω). (22)
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Notice also that

Lemma 2

(1) H is separating if and only if κ is injective.
(2) If H generates F then κ is (F ,F0)-measurable.

Proof. The first assertion is straightforward.
Let t1, ..., tn ∈ R and A1, ..., An ∈ Bd. From (21) and (22), we have immediately

κ−1[Wt1 ∈ A1, ...,Wt1 ∈ A1] = [Ht1 ∈ A1, ...,Ht1 ∈ A1].

Hence κ is (F ,F0)-measurable since W generates F0 and H generates F .

Example 1 Let (Ω0,F0,Θ,W ) be the Wiener helix and let Ωc
0 := {u ∈ Ω0 : u is continuous }. Then Ωc

0 is
Θ-invariant and therefore, the restriction of W on Ωc

0 is an helix (cf. Remark 1.3). It is called the continuous
Wiener helix and is denoted by (Ωc

0,Fc
0 ,Θ,W ).

However, the coordinates-map, in this case, is exactly the canonical injection i : Ωc
0 → Ω0.

This example proves that, the coordinates-map may be not surjective.

Theorem 2 Let (Ω,F) be a measurable space and let H be a stochastic process which separates the points of
Ω and generates F . Then H is an helix if and only if κ(Ω) is Θ-invariant.

Proof. Suppose first that H is an helix which separates the points of Ω and generates F . Let Φ be the unique
DS on (Ω,F) (defined by Proposition 1) for which H is an helix.
Let ω ∈ Ω and s, t ∈ R then by (3), (21) and (22) we have

κ(Φt(ω))(s) = Hs(Φt(ω))

= Hs+t(ω)−Ht(ω)

= Ws+t(κ(ω))−Wt(κ(ω))

= Ws(Θt(κ(ω)))

= Θt(κ(ω))(s).

Hence κ is an SD-morphism and therefore the restriction of Θ to κ(Ω) is a DS by Lemma 1, since κ is injective.
En particular, κ(Ω) is Θ-invariant. In fact the coordinates-map κ is an SD-isomorphism between Ω and κ(Ω).
Conversely, suppose that κ(Ω) is Θ-invariant then, the restriction of Θ on κ(Ω) is a DS. On the other hand,
since H separates the points of Ω, κ must be injective and hence κ : Ω → κ(Ω) is one-to-one. We may also
define

Φt(ω) := κ−1(Θt(κ(ω))); (t ∈ R, ω ∈ Ω) (23)

Φt : Ω→ Ω is well defined, since Θ(κ(ω)) ∈ κ(Ω) by the Θ-invariance of κ(Ω). Notice that (23) is equivalent to

κ(Φt(ω)) = Θt(κ(ω)); (t ∈ R, ω ∈ Ω). (24)

Therefore by (22), (24) and (20), we have

HsΦt = WsκΦt = WsΘtκ = (Ws+t −Wt)κ = Hs+t −Ht

for all s, t ∈ R. This means that (3) is fulfilled. Since H generates F , we deduce as in the proof of Lemma 2,
that Φt is measurable and we conclude that H is an helix.
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Corollary 3 Let (Ω,F ,Φ, H) be an helix. If H separates the points of Ω and generates F , then H is conjugate
to the Winer helix (Ω0,F0,Θ,W ).

3.3. Linear transformations of helices

Let (Ω,F ,Φ) be a DS and let H be a Φ-helix on Rd. If f : Rd → Rn is a linear then, f ◦H is a Φ-helix on
Rn.
In what follows, we deal with the converse problem: It turns out that if H is ”rich enough” and if f ◦H is a
Φ-helix then f must be linear.

Definition 3 Let (Ω,F ,Φ) be a DS and let H be a Φ-helix on Rd. H is said to be connecting if for all
x, y ∈ Rd there exists ω ∈ Ω; s, t ∈ R such that x = Hs(ω) and y = Ht(ω).

Examples 2

(1) Suppose that (Ω,F) = (R,B) and Φtω := ω + t for ω, t ∈ R. Then (t, ω) 7→ t defines a Φ-helix which is
trivially connecting.

(2) Let (Ω,F ,Φ) be a DS and let h : Rd → Rd be a bounded Borel function. Then (t, ω) 7→ h(ω)− h(Φtω)
defines a Φ-helix which is not connecting. Indeed, if M is such that |f(x)| ≤ M for each x ∈ Rd, then
there exists no t ∈ R and ω ∈ Ω such that z = Ht(ω) if |z| ≥ 2M + 1.

(3) Let x, y ∈ Rd, then there exists ω : R → Rd and s, t ∈ R such that ω(0) = 0, ω(s) = x and ω(t) = y.
Therefore the Wiener helix (Ω0,F0,Θ,W ) is connecting.
Further, ω can be chosen to be continuous. Hence the continuous Wiener helix (Ωc

0,Fc
0 ,Θ,W ) is also

connecting.

Theorem 3 Let (Ω,F ,Φ) be a DS, H a connecting Φ-helix on Rd and let f : Rd → Rn be a Borel function.
The following statements are equivalent

(1) f ◦H is a Φ-helix.
(2) f is linear.

Proof: If f is linear then obviously f ◦H is a Φ-helix whenever H is a Φ-helix.
Conversely, let x, y ∈ Rd. Since H is connecting, then there exists ω ∈ Ω and s, t ∈ R such that

Hs(ω) = x; Ht(ω) = y. (25)

Applying (3) for the two Φ-helices H and f(H), we obtain

f(Hs−t(Φtω)) = f(Hs(ω)−Ht(ω)) (26)

and

f(Hs−t(Φtω)) = f(Hs(ω))− f(Ht(ω)). (27)

Combining (25), (26) and (27), we deduce that

f(x− y) = f(x)− f(y); (x, y ∈ Rd). (28)

In other words, f is a Borel solution of the Cauchy equation (28). We conclude by a classical result (cf. [1, 10]
for example) that f is linear.

Remark 5 If H is not separating, it is clear how to construct a non linear function f such that f ◦H is an
helix. Indeed, it suffices to start with a linear map f (therefore f ◦H will be an helix) and to change the value
of f on some points of Rn, which are not reached by the map H.
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3.4. Helices and cocycles

Let (Ω,F ,Φ) be a DS and let (G, ∗) be a group with neutral element eG.
An abstract Φ-cocycle over the DS Φ, is a mapping C : R × Ω ×G → G; (t, ω) 7→ C(t, ω) such that the family
C(t, ω) := C(t, ω, .) : G→ G, satisfies the cocycle equation, i.e.: For s, t ∈ R, ω ∈ Ω

C(0, ω) = eG, C(s+ t, ω) = C(s, θtω) ∗ C(t, ω). (29)

In particular,

(1) If (G, ∗) = (]0,∞[,×), then C is called a multiplicative Φ-cocycle. This equation is involved in many
topics: Information without probability, abstract automat, lattice semigroups,... (cf. [6] and the related
references).

(2) If (G, ∗) = (Rd,+), then C is called additive Φ-cocycle or Φ-helix on Rd (notice that (29) is equivalent
to (3) in this case). The Wiener helix is considered as an important example of additive cocycle. It
plays a fundamental role in the theory of stochastic integration and stochastic differential equations
(cf. [2] and the related references).

(3) If (G, ∗) = (G(Rd), ◦) the group of self-mappings {f : Rd → Rd}, then C is said to be a cocycle on Rd. In
this case, (Φ, C) is the so called random dynamical system on Rd. In particular, C is a model of solutions
of random iteration equations, random differential equations and stochastic differential equations (cf. [2]
Part 1 and the related references).

Let C be a cocycle on Rd, over a DS Φ. An associated random fix point is a random vector Y : Ω → Rd such
that

C(t, ω)Y (ω) = Y (Φtω); (t ∈ R, ω ∈ Ω) (30)

(cf. [8] and the related references). Random fix points are exactly the stationary solutions of the cocycle equa-
tion on Rd.

Let (Ω,F ,Φ) be a DS, let H be a Φ-helix on Rd then

C(t, ω)x := Ht(ω)) + x; (t ∈ R, ω ∈ Ω, x ∈ Rd) (31)

defines a Φ-cocycle on Rd. In this case the following fact can be easily verified: C admits a random fix point if
and only if H is a closed Φ-helix.
By Theorem 3 and Remark 1.1, we may replace H in (31) by f(aU + bV ) where a, b ∈ R and U, V are two
Φ-helices and f is a linear mapping.
Some naturals questions arise:

(1) Are there other transformations of helices in order to obtain cocycles?
(2) Does there exist cocycles which are not generated by helices?

The following two remarks are classical in the framework of random dynamical systems (cf. [2]).

(1) In fact, the Wiener helix satisfies some additional properties (semi-martingale...) which allow to define

the stochastic integral with respect to W , namely
∫ t

0
f(ω, s)dWs(ω) (cf. [9], Chap. III and IV). Therefore,

the following stochastic differential equation may be also defined (cf. [9], Chap. V).

dXt = b(t,Xt)dt+ σ(t,Xt)dWt; X0 = x. ∈ Rd. (32)

Under some classical conditions on b and σ, (32) admits a unique solution denoted by ϕ(t, ω)x. Moreover
(t, ω, x)→ ϕ(t, ω)x defines a cocycle on Rd over the Wiener shift Θ (cf. [2], Chap 2.3).
In particular such cocycles are also generated by helices.
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(2) Let (Ω,F ,Φ) be a measurable dynamical system and let f : Ω × Rd → Rd be a measurable function.
We may associate the random differential equation

dXt(ω) = f(Φtω,Xt)dt; X0(ω) = x ∈ Rd. (33)

Under some convenient conditions on f , (33) admits a unique solution ϕ(t, ω)x which defines also a
cocycle on Rd over the DS Φ (cf. [2], Chap 2.2).
However, such cocycles are not generated by helices.

Let Φ : R× Ω→ Ω and let ϕ : R× Ω× Rd → Rd be two maps. The associated skew product Λ is defined by

Λ : R× Ω× Rd → Ω× Rd

(t, ω, x) → (θtω, ϕ(t, ω)x)
.

By the well definitions, the following statements are equivalent:

(a) Φ is a DS on Ω and ϕ is a cocycle over Φ on Rd.
(b) Λ is a DS on Ω× Rd.

A Λ-helix is also a stochastic process K = (Kt)t∈R such that Kt : Ω× Rd → Rd, K0(ω, x) = 0 and

Ks+t(ω, x) = Ks(Φtω, ϕ(ω, t)x) +Kt(ω, x). (34)

For example Kt(ω, x) := ϕ(t, ω)x− x is a Λ-helix.

We conclude this paper by introducing a new notion.
Let (Ω,F ,Φ) be a measurable dynamical system. An associated bi-helix is a pair (H,K) where

(1) H : R× Ω→ Rd, (t, ω)→ Ht(ω) is an helix over Φ,
(2) K : R×Ω×Rd → Rd, (t, ω, x) 7→ Kt(ω, x) is an helix over the DS Λ defined by Λt(ω, x) := (Φtω,Ht(ω)+

x).

Hence by (3) and (34), (H,K) satisfies the coupling system H0(ω) = 0, Hs+t(ω) = Hs(Φtω) +Ht(ω);

K0(ω, x) = 0, Ks+t(ω, x) = Ks(Φtω,Ht(ω) + x) +Kt(ω, x).
(35)

Although (35) is defined in a theoretical way, it seems that a new light can be shed on this system.

Remark 6 Notice that cocycle equations have been studied during the last years in different situations of
rings of power series, in a series of papers by H. Fripertinger and L. Reich, with a somewhat different terminology.
In their proofs, also, the helix plays a role (cf. [3] and the related references).
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