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CONSERVATION LAWS WITH A NON-LOCAL FLOW

APPLICATION TO PEDESTRIAN TRAFFIC.

Magali L�ecureux-Mercier1

Abstract. In this note, we introduce some models of pedestrian tra�c and prove existence and

uniqueness of solutions for these models.

R�esum�e. On pr�esente ici di��erents mod�eles de tra�c pi�eton et on prouve l’existence et l’unicit�e des

solutions pour ces mod�eles.

1. Introduction

In the last decades, the crowds’ dynamics has attracted a lot of scienti�c interest. A �rst reason of this
interest is to understand how crowd disasters happened in some panic events, for example at the end of football
play, during concerts, in the case of �re, or in place of pilgrimage (e.g. on Jamarat Bridge in Saudi Arabia,
see [13]). Another reason lies in architecture of buildings such as subway stations or stadiums, where a lot of
pedestrians are crossing. The goals here are consequently twofold: in one hand we want to understand the
behavior of pedestrians in panic and adapt the regulation of tra�c in order to avoid deaths; in the other hand,
we want to model the interaction of several kinds of pedestrians with di�erent objectives and in particular study
how the geometry inuences the general pattern.

In a macroscopic setting, a population is described by its density � which satis�es the conservation law

@t�+ Div(� V (t; x; �)) = 0 ; �(0; �) = �0 ;

where V (t; x; �) is a vector �eld describing the velocity of the pedestrians depending on the time t � 0, the space
x 2 R

N and the density �. According to the choice of V , various behaviors can be observed. Several authors
already studied pedestrian tra�c in two dimensions space (N = 2). Some of these models are local in �, that
is to say V depends on the local density �(t; x) [2, 8, 15, 16, 20, 21] ; other models use not only the local density
�(t; x) but the entire distribution of �, for example they depend on the convolution product �(t) � � [11, 22].
Here, in the line of preceding papers [4{7], we present nonlocal macroscopic models for pedestrian tra�c, we
study these models and compare their properties.

Our �rst aim is to model the behavior of pedestrians in di�erent situations: crowd behaves indeed di�erently
in panic or in a normal situation where courtesy rules do apply. We also introduce models in the case of a
population interacting with an individual, and in the case of several populations with di�erent objectives. For
instance, we want to include in our study the case of two populations crossing in a corridor.

Second, we want to study the introduced models and prove existence and uniqueness of solutions under various
sets of hypotheses. We will use two kinds of arguments: the �rst one comes from Kru�zkov theory [17, 18], the
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second one from the optimal transport theory. We want to prove existence and uniqueness of solutions for the
various models presented below. Let us concentrate on the case of pedestrians in panic:

@t�+ Div
�

� v(� � �)~�(x)
�

= 0 ; �(0; �) = �0 : (1)

All the proofs of existence and uniqueness in this note are based on the following idea: let us �x the nonlocal
term and, instead of (1), we study the Cauchy problem

@t�+ Div(� v(r � �)~�(x)) = 0 ; �(0) = �0 ; (2)

where r is a given function. Then, we introduce the application

Q :

(

r 7! �
X ! X

)

;

where the space X has to be chosen so that

(a): X is equipped with a distance d that makes X complete;
(b): the application Q is well-de�ned: the solution � 2 X exists and is unique (for a �xed r);
(c): the application Q is a contraction.

Once we have ful�lled these conditions, we can prove existence and uniqueness of a solution using a �xed point
argument.

Note that, in the modelling of pedestrian tra�c, the space dimension N has to be equal to two, but our
results are in fact true for all N 2 N. For instance, they can be adapted in dimension N = 3 to model the
behavior of �shes or birds. Hence, we keep here a general N , even if we essentially think to the case N = 2.

This note is organized as follows: in Section 2, we describe some nonlocal models and their properties. In
Section 3 we study one of these models through Kru�zkov theory and in Section 4 we study the same model
through optimal transport theory.

2. Pedestrian Traffic Modelling

2.1. One-Population model

2.1.1. Pedestrian in panic

The �rst model we present corresponds to pedestrians in panic and was studied in [6,7], in collaboration with
R. M. Colombo and M. Herty. A panic phenomenon appears under special circumstances in crowded events.
In these cases, the people are no longer rational and try, no matter how, to reach their target. Let us denote
�(t; x) the density of pedestrians at time t, and position x 2 R

N , and consider the Cauchy problem (1). Here,
v is a real function describing the speed of the pedestrians. This function does not depend on the local density
�(t; x) but on the averaged density �(t) � �(x) =

R

RN �(t; x � y) �(y) dy. The vector �eld, ~�(x) describes the
direction that the pedestrian located in x will follow, independently from the distribution of the pedestrians’
density. Note that we are working here on the all of RN and not on a subset of RN ; thus, we are not working on
a restriction to a room, for example. However, we can still introduce the presence of walls and obstacles in the
choice of the vector �eld ~�. Let us denote 
 � R

N the space where the pedestrians are authorized to walk, e.g.
a room. If we choose ~�(x) in a nice way (for example we can require that on the walls, i.e. for all x 2 @
, ~�(x)
coincides with the entering normal to 
), then we can conclude to the invariance of the room. More precisely,
if the initial density has support on some closed set 
 � R

N , then the solution will have support contained in

 for all time. This remark allows us to avoid considering any boundaries and to have solutions on all RN .

Using the Kru�zkov theory on classical scalar conservation laws, we are able to prove:
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Theorem 2.1 (see [7]). Let �0 2 (L1 \ L1 \ BV)(RN ;R+). Assume v 2 (C 2 \ W2;1)(R;R), ~� 2 (C 2 \
W2;1)(RN ;RN ), � 2 (C 2 \ W2;1)(RN ;R). Then there exists a unique weak entropy solution � = St�0 2
C 0(R+;L

1(RN ;R+)) to (1) with initial condition �0. Furthermore we have the estimate



�(t)




L1
� k�0k

L1e
Ct ;

where the constant C depends on v, ~� and �.

For the de�nition of weak entropy solutions see Section 3; the proof is deferred to Section 3.2.1.

In Theorem 2.1, the hypotheses are very strong. Let us denote P(RN ) the set of probability measures on
R

N and M+(RN ) the set of positive measures on R
N . In collaboration with G. Crippa, using now some tools

from optimal transport theory and in particular tools on the continuity equation @t� + Div(� b) = 0 (which is
obtained from (1) when the nonlocal term is �xed, as in (2)), we obtained the better result:

Theorem 2.2 (see [9]). Let �0 2 M+(RN ). Assume v 2 (L1 \ Lip)(R;R), ~� 2 (L1 \ Lip)(RN ;RN ),
� 2 (L1 \ Lip)(RN ;R+). Then there exists a unique weak measure solution � 2 L1(R+;M

+(RN )) to (1) with
initial condition �0.

If furthermore �0 2 L1(RN ;R+) then for all t � 0, the solution � satis�es also �(t) 2 L1(RN ;R+).

For the de�nition of weak measure solution see Section 4; the proof is deferred to Section 4.2.

Note that for the model (1), there is a priori no uniform L1 bound on the density. Indeed, heuristically,
considering the case in which the density is maximal, equal to 1, on the trajectory of a pedestrian located in
x. If the averaged density around x is strictly less than 1 (because, for example there is no one behind this
pedestrian), then the speed v(� � �) will be strictly positive, which means the pedestrian in x will try to go
forward, even though there is a queue in front of him. Consequently, we expect the density to become larger
than one.

This behavior is not really unexpected in the case of panic. In fact, in some events the density attained up to
10 persons per square meter, which is obviously too much and a cause of deaths (see [13]). Consequently, it is
quite satisfactory to recover this behavior. One of our goal in this context is then to introduce a cost functional
allowing to characterize the cases in which the density is too high, and to �nd extrema of this functional. Let
us introduce

JT (�0) =

Z T

0

Z




f(St�0) dx dt ; (3)

where 
 � R
N is the room, �0 is the initial condition and St�0 is the semi-group generated by Theorem 2.1.

We choose the function f 2 C 1(R;R+) so that it is equal to zero for any density � less than a �xed threshold �c

and so that it is strictly increasing on [�c;+1[. Consequently, the functional JT above allows to characterize
the solutions with too high density and in particular it vanishes if the set f(t; x) 2 [0; T ] � R

N : St�(x) � �cg
has measure zero. We are then interested in �nding the minima of this cost functional.

Using the Kru�zkov theory we prove the following di�erentiability result:

Theorem 2.3 (see [6,7]). Let �0 2 (W2;1 \ W2;1)(RN ;R+), r0 2 (W1;1 \ L1)(RN ;R) and denote � = St�0.
Assume v 2 (C 4 \ W2;1)(R;R), ~� 2 (C 3 \ W2;1)(RN ;RN ), � 2 (C 3 \ W2;1)(RN ;R+). Then there exists a
unique weak entropy solution r = ��

t r0 to the Cauchy problem

@tr + Div(r v(� � �)~�(x)) = �Div(� v0(� � �) r � � ~�(x)) ; r(0) = r0 : (4)

Furthermore, the semi-group St obtained in Theorem 2.1 is Gâteaux-di�erentiable, that is to say, for all
�0 2 (W2;1 \ W2;1)(RN ;R+), r0 2 (W1;1 \ L1)(RN ;R),

lim
h!0









St(�0 + hr0) � St�0

h
� ��

t r0









L1

= 0 :
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The proof is deferred to Section 3.2.2. It is not possible to obtain the same result by the use of optimal
transport theory. Indeed, it seems already not possible to �nd a good de�nition of Gâteaux di�erentiability on
the set of probability measures equipped with the Wasserstein distance of order 1.

Extrema of a cost functional. Once the di�erentiability result of Theorem 2.3 is available, a necessary
condition of optimality is straightforward: we are now able to characterize the extrema of the cost functional
JT given in (3) as stated below.

Proposition 2.4 (see Proposition 2.12 in [6]). Let f 2 C 1;1(R;R+) and  2 L1(R+ � R
N ;R). Assume

S : [0; T ] � (L1 \ L1)(RN ;R) ! (L1 \ L1)(RN ;R) is L1 Gâteaux di�erentiable.
If �0 2 (L1 \ L1)(RN ;R) is solution of the problem: \Find min�0

JT (�0)", then, for all r0 2 (L1 \

L1)(RN ;R), we have:

Z T

0

Z

RN

f 0(St�0) ��0

t r0  (t; x) dx dt = 0.

2.1.2. Orderly crowd

In opposite to the previous model, for a model of orderly crowd it is required to have a uniform L1 bound
on the density. In collaboration with R. M. Colombo and M. Garavello [5], we studied the equation

@t�+ Div

2

6

4
�v(�)

�

~�(x) �
r(� � �)

q

1 +


r(� � �)




2

�

3

7

5
= 0 ; (5)

with �0 2 (L1 \L1 \BV)(RN ;R). In this model, the speed v depends on the local density �(t; x), which allows
to prove some uniform bound in L1. The preferred direction of the pedestrians is still ~�(x), but they deviate
from their optimal path trying to avoid entering regions with higher densities. Indeed, (� � �) is an average of
the crowd density around x and �r(� � �) is a vector going in the direction opposite to the area of maximal
averaged density. Due to the nonlinearity of the ow with respect to the local �, it is no longer possible to use
optimal transport theory. Hence, we use Kru�zkov theory, to prove existence and uniqueness of solutions. We
obtain the theorem:

Theorem 2.5 (see [5]). Assume that v 2 C 2([0; 1];R+) satis�es v(1) = 0, ~� 2 (C 2 \ W2;1 \ W1;1)(RN ;RN ),
and � 2 (C 3 \ W3;1 \ W2;1)(RN ;R). Then, for any �0 2 (L1 \ L1 \ BV)(RN ; [0; 1]), there exists a unique
weak entropy solution � 2 C 0(R+;L

1(RN ; [0; 1])) to (5).

The proof of this theorem relies on Kru�zkov theory (see Section 3). For this model the density is uniformly
bounded in L1, contrarily to the panic model, in which the L1 norm can grow exponentially in time.

Some di�culties now appear in proving that the pedestrians remain in the authorized area. Let us introduce
the following invariance property:

(P): Let 
 � R
N be region where the pedestrians are allowed to walk. The model (5) is invariant with

respect to 
 if

Supp(�0) � 
 ) Supp(�(t)) � 
 for all t � 0 :

To obtain that (P) is satis�ed, we have to require the preferred direction to be strongly entering the room
(see [5, Proposition 3.1 & Appendix A]).

Some interesting phenomena show up through numerical computations. First, when considering a crowd
walking along a corridor, we observe the formation of lanes (see Figure 1).

Furthermore, this phenomenon seems very stable with respect to initial conditions and geometry. Indeed
considering the room and initial distribution as in Figure 2, adding some various obstacles, we still have lanes,
at least in large space (see Figures 3).

A further remarkable property of the model (5) is that it captures the following well-known, although some-
times counter intuitive phenomenon (Braess paradox): the evacuation time through an exit can be reduced
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Figure 1. Solution to (5) at times t = 0, 2:529, 5:043, 7:557, 10:071; 15:014. First 3 lanes are
formed, then the middle lane bifurcates forming the fourth lane. Picture from [5].
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Figure 2. Initial datum and room geometry. Picture from [5].
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Figure 3. Solution to (5) with di�erent geometries, computed at time t = 2:521, 5:043 and
7:563. Picture from [5].

by carefully positioning suitable \obstacles" that direct the outow (see for instance [12] and the references
therein). Indeed, looking at Figure 4, we observe that the time of exist with obstacles is slightly shorter than
the one without any obstacle.

2.2. Several populations

A natural wish now is to extend the previous models to the case of several population with di�erent objectives.
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Figure 4. Solution to (5) with " = 0:2, at times t = 4:438, 6:253, 11:396. On the �rst line, no
obstacle is present. On the second line, 4 columns direct the crowd ow. The evacuation time
in the latter case is shorter than in the former one. Picture from [5].

2.2.1. Panic

With several populations, we have to consider several densities and several equations. For two populations,
extending the idea of the equation (1) to the case of several populations, we obtain the system

(

@t�1 + Div
�

�1 v(�1 � �1 + �2 � �2)~�1(x)
�

= 0 ;
@t�2 + Div

�

�2 v(�1 � �1 + �2 � �2)~�2(x)
�

= 0 :
(6)

Here we consider that the speed v depends on the average of the total density �1 + �2. The di�erence of goals
of the populations 1 and 2 is reected in the choice of di�erent preferred directions ~�1 and ~�2.

Note that the two equations in (6) are weakly coupled in the sense that the coupling appears only through the
nonlocal term. Consequently, the de�nition of weak entropy solutions for this system has to be understood in the
sense of Kru�zkov for each each equation and not in the sense of Lax for hyperbolic systems of conservation laws.
We are able to prove theorems similar to the ones of section 2.1.1. In collaboration with R. M. Colombo [7], we
obtained:

Theorem 2.6 (see [7]). Let �0 = (�0;1; �0;2) 2 (L1 \ L1 \ BV)(RN ;R2
+). Assume that, for i 2 f1; 2g,

vi 2 (C 2 \ W2;1)(R;R), ~�i 2 (C 2 \ W2;1)(RN ;RN ), �i 2 (C 2 \ W2;1)(RN ;R). Then there exists a unique
weak entropy solution � = St�0 2 C 0(R+;L

1(RN ;R2
+)) to (6) with initial condition �0. Furthermore we have

the estimate


�(t)




L1
� k�0k

L1e
Ct ;

where the constant C depends on v, ~� and �.

Similarly as for one population, it is possible with several populations to prove the Gâteaux-di�erentiability
thanks to Kru�zkov theory (see [7, Theorem 2.2]).

As in Theorem 2.6, the hypotheses of Theorem 2.6 are very strong. In collaboration with G. Crippa [9], using
tools from optimal transport theory and properties of the continuity equations, we obtained the better result:

Theorem 2.7 (see [9]). Let �0 2 P(RN )2. Assume vi 2 (L1 \ Lip)(R;R), ~�i 2 (L1 \ Lip)(RN ;RN ), �i 2
(L1 \Lip)(RN ;R+). Then there exists a unique weak measure solution � 2 L1(R+;P(RN )2) to (6) with initial
condition �0.

If furthermore �0 2 L1(RN ;R+) then for all t � 0, we have �(t) 2 L1(RN ;R+).

The idea of the proof for this theorem is given in Section 4.
Interaction continuum / individuals. Note that in the framework of Theorem 2.7, we are dealing with

measure solutions. This context allows us to describe a coupling between a group of density �1 and an individual




