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QUALITATIVE PROPERTIES IN A MORE GENERAL DELAYED

HEMATOPOIETIC STEM CELLS MODEL ∗

R. Yafia1 and M. A. Aziz-Alaoui2

Abstract. In this paper, we consider a more general model describing the dynamics of Hematopoietic
Stem Cells (HSC) model with one delay. Its dynamics are studied in terms of local stability and Hopf
bifurcation. We prove the existence of the possible steady state and their stability with respect to the
time delay and without delay. We show that a sequence of Hopf bifurcations occur at the positive
steady state as the delay crosses some critical values. We illustrate our results by some numerical
simulations.

Introduction and mathematical model

Hematological diseases have attracted a significant amount of modelling attention because a number of them
are periodic in nature (Haurie, Dale and Mackey (1998) [18]). Some of these diseases involve only one blood cell
type and are due to the destabilization of peripheral control mechanisms, e.g., periodic auto-immune hemolytic
anemia (Bélair, Mackey and Mahaffy (1995) [3] ; Mahaffy, Bélair and Mackey (1998) [29]), and cyclical throm-
bocytopenia (Swinburne and Mackey (2000) [40] ; Santillan et al. (2000) [38]). Typically, periodic hematological
diseases of this type involve periodicity between two and four times the bone marrow production or maturation
delay (which is different from the delay considered in this paper).
Other periodic hematological diseases involve oscillations in all of the blood cells (white cells, red cells and
platelets). Examples include cyclical neutropenia (Haurie, Dale and Mackey (1999) [20] ; Haurie et al. (2000) [19])
and periodic chronic myelogenous leukemia (Fortin and Mackey (1999) [14]). These diseases involve very long
periodic dynamics [15, 36] (on the order of weeks to months) and are thought to be due to a destabilization of
haematopoietic stem cells (HSC) compartment from which all of these mature blood cell types are derived, see
Fowler and Mackey (2002) [15].
The population of (HSC) give rise to all of the differentiated elements of the blood : the white blood cells, red
blood cells, and platelets, which may be either actively proliferating or in a resting phase. After entering the
proliferating phase, a cell is committed to undergo cell division at a fixed time τ later. The generation time τ is
assumed to consist of four phases, G1 the pre-synthesis phase, S the DNA synthesis phase, G2 the post-synthesis
phase and M the mitotic phase.
Just after the division, both daughter cells go into the resting phase called G0-phase. Once in this phase, they
can either return to the proliferating phase and complete the cycle or die before ending the cycle. The (HSC)
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2 Laboratoire de Mathématiques Appliquées, 25 Rue Ph. Lebon, BP 540, 76058 Le Havre Cedex, France. aziz.alaoui@univ-

lehavre.fr
c© EDP Sciences, SMAI 2013

Article published online by EDP Sciences and available at http://www.esaim-proc.org or http://dx.doi.org/10.1051/proc/201339009

http://publications.edpsciences.org/
http://www.esaim-proc.org
http://dx.doi.org/10.1051/proc/201339009


ESAIM: PROCEEDINGS 67

model that we consider is a classical G0 model, see [9, 26,39] and reference therein.

The full model for this situation consists of a pair of (age structured) reaction convection evolution equations
with their associated boundary and initial conditions [22,23,27,37].
Using the method of characteristics [45] these equations can be transformed into a pair of non-linear first order
differential delay equations, see [1, 15,22,24], [25], see also [36] and references therein cited,

dN
dt = −δN − β(N)N + 2e−γτβ(Nτ )Nτ

dP
dt = −γP + β(N)N − e−γτβ(Nτ )Nτ

(1)

where β is a monotone decreasing function of N which has the explicit form of a Hill function (see [8,13,22,
33]) :

β(N) = β0
θn

θn +Nn
(2)

The symbols in equation (1) have the following interpretation. N is the number of cells in non-proliferative
phase, Nτ = N(t − τ), P the number of cycling proliferating cells, γ the rate of cells loss from proliferative
phase, δ the rate of cells loss from non-proliferative phase, τ the time spent in the proliferative phase, β the
feedback function, rate of recruitment from non-proliferative phase, β0 > 0 the maximal rate of re-entry in
the proliferating phase, θ ≥ 0 is the number of resting cells at which β has its maximum rate of change with
respect to the resting phase population, n > 0 describes the sensitivity of reintroduction rate with changes in
the population, and e−γτ accounts for the attenuation due to apoptosis (programmed cell death) at rate γ.
The model (1) was intensively studied by many authors, see for example, [1,6,7,13,15,22–25,35,36,41–43], this
list being not exhaustive.
For numerical study, typical values of the parameters for humans are given by Mackey (1978), (1997) [22,24] as

δ = 0.05d−1, β0 = 1.77d−1, τ = 2.2d, n = 3.

(The value of θ is 1.62× 108 cells Kg−1, but this is immaterial for dynamic considerations). For values of γ in
the range 0.2d−1, the consequent steady state is unstable and there is a periodic solution whose period T at
the bifurcation ranges from 20− 40 days, see (Fowler and Mackey, 2002) [15]. In [22,23] the author proves that
the stability of the non trivial steady state depend on the value of γ. When γ = 0 , this steady state cannot
be destabilized to produce dynamics characteristic of periodic hematopoiesis. On the other hand, for γ > 0,
increase in γ lead to a decrease in the (HSC) numbers and a consequent decrease in the cellular efflux (given
by δN) into the differentiated cell lines. This diminished efflux becomes unstable when a critical value of γ is
reached, γ = γ1, at which a supercritical Hopf bifurcation occurs. For all values of γ satisfying γ1 < γ < γ2,
there is a periodic solution of the above model whose period is in good agreement with that seen in periodic
hematopoiesis. At γ = γ2, a reverse bifurcation occurs and greatly diminished (HSC) numbers as well as cellular
efflux again become unstable.
In [35], authors numerically investigate the influence of each parameter (τ , δ, γ, β0 and n) on the oscillation
characteristics, see [36]. In [36], authors consider the limiting case (n = +∞) of the above model in order to
compute an explicit solution, give an exact form of the period and the amplitude of oscillations. They illustrate
these results numerically and show that the main parameters controlling the period are (τ , δ, γ, β0 and n)
mainly influence the amplitude. These authors consider n = 12 as a good approximation of high Hill coefficient
for their numerical simulations. The Hill coefficient n is often regarded as a cooperativity coefficient, describing
the number of agents (molecules, proteins or complexes) required to activate or deactivate a given process. If
n was interpreted to be the number of ligand molecules required to active or deactivate a receptor site, then
values of n = 12 or larger would not biologically realistic. However, there are other situations in which cascade
effects are known to create switch like phenomena [13]. In these circumstances, both experimental data and
theoretical modelling suggest that the large values of n considered are quite realistic [6, 7, 36].
It is generally believed that normal and malignant cell population have different cell cycle times (Andersen and
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Mackey (2000) [1], Baserga (1981) [2]) and thus they will be described by different parameters in the above
model. In particular, in untreated leukemic cells the apoptotic rate γ is significantly smaller than in normal
cells (Macnamara et al., (1999) [28] ; Okita et al., (2000) [31] ; Ong et al., (2000) [32] ; Parker et al., (2000) [34]),
and the time spent τ in the proliferating phase is longer relative to normal cells in the bone morrow, see also
(Andersen and Mackey 2001) [1].
In this paper, we are interested on the more general mathematical model of (1) given by the following system
of delay differential equations by replacing the quantity e−γτ by the Lasota function e−γNτ see Wazewska and
Lasota 1976 [44] ; it measures the production rate of proliferating hematopoietic stem cells between t− τ and t :

dN
dt = −δN − β(N)N + 2e−γNτβ(Nτ )Nτ

dP
dt = −γP + β(N)N − e−γNτβ(Nτ )Nτ

(3)

The idea comes from the paper of Wazewska and Lasota 1976 [44], in which the authors presented a model of
the erythropoietic (red blood cells) system in the form of one autonomous functional differential equation :

du(t)

dt
= −σu(t) + ρe−γu(t−H), (4)

σ > 0, ρ > 0, γ > 0, H > 0.
where u(t) is the red blood cell number at t ≥ 0, σ the rate of the red blood cells, ρ and γ de γ describe the
production of the red blood cells per unite time and H is the time required to produce a red blood cell.
We show that, under some natural assumptions, the non-trivial fixed state is stable for small delay times, and
later it looses the stability via a supercritical Hopf bifurcation, giving birth to a stable periodic solution.
This paper is organized as follows. In section 1, we prove the existence and stability of the possible steady states
with/without delay. Section 2 is devoted to the occurrence of Hopf bifurcation by considering the delay as a
parameter bifurcation, we prove the occurrence of a sequence of Hopf bifurcation. In the end we illustrate our
result by a numerical simulations.

1. Steady states and stability

1.1. Existence of possible steady states

Consider the system : 
dN
dt = −δN − β(N)N + 2e−γNτβ(Nτ )Nτ

dP
dt = −γP + β(N)N − e−γNτβ(Nτ )Nτ

(5)

The equilibrium points are given be resolving the equations
dN
dt = 0

dP
dt = 0

(6)

Let d = ln(2)
γ and define the function F (N) = β(N)(2e−γN − 1).

As F (0) = β0 and F (d) = 0, we have that F is a positive decreasing function on ]0, d[
From equation (6)1, there exits N∗ ∈]0, d[ such that F (N∗) = δ iff δ ∈]0, β0[.

Where N∗ = F−1(δ), and from the equation (6)2 we obtain that

P ∗ =
1

γ
(1− e−γN

∗
)β(N∗)N∗

Then, we have the following result
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Proposition 1.1. 1) If δ > β0, system (5) have a unique trivial equilibrium point E0 = (0, 0).
2) If δ ∈]0, β0[, system (5) have two equilibrium points the first is trivial E0 = (0, 0) and the second is non
trivial (positive) given by E∗ = (N∗, P ∗), where N∗ = F−1(δ) and P ∗ = 1

γ (1− e−γN∗)β(N∗)N∗.

1.2. Stability of steady states for τ = 0

For τ = 0 system (5) becomes a system of ordinary differential equations given by the following system :
dN
dt = −δN − β(N)N + 2e−γNβ(N)N

dP
dt = −γP + β(N)N − e−γNβ(N)N

(7)

Proposition 1.2. 1) If δ > β0, the trivial equilibrium point E0 = (0, 0) is asymptotically stable.
2) If δ ∈]0, β0[, the equilibrium point E0 = (0, 0) is unstable and the non trivial (positive) E∗ = (N∗, P ∗) is
asymptotically stable.

Démonstration. 1) The steady states are the same given in Proposition 1.1. The stability of E0 = (0, 0), we
linearize system (7) around the concerned steady state E0.
The linearized equation is given as follows :

dN
dt = −δN + β(0)N

dP
dt = −γP

(8)

and the characteristic equation associated to E0 :

(λ+ δ − β(0))(λ+ γ) = 0 (9)

Then, the characteristic roots are as follow λ1 = −γ and λ2 = −δ + β0.
2) Suppose now that 0 < δ < β0 and let N = x+N∗ and P = y + P ∗.
We linearize the system (7) around the equilibrium point E∗ and the linearized system is given as follows :

dx
dt = −δx+

{
−β′(N∗)N∗ − 2γe−γN

∗
β(N∗)N∗ + 2e−γN

∗
β′(N∗)N∗

}
x

dy
dt = −γy +

{
γ P
∗

N∗ + γ P
∗β′(N∗)
β(N∗) + γe−γN

∗
β(N∗)N∗

}
x

(10)

The characteristic equation is given as follows

(λ+ γ)(λ+ β′(N∗)N∗ + 2γe−γN
∗
β(N∗)N∗ − 2e−γN

∗
β′(N∗)N∗) = 0 (11)

and the associated characteristic roots are as follow : λ1 = (2e−γN
∗ − 1)β′(N∗)N∗ − 2γe−γN

∗
β(N∗)N∗ and

λ2 = −γ. As β is a decreasing positive function and 2e−γN
∗ − 1 > 0, we have λi < 0, i = 1, 2.

Then the steady states E∗ is asymptotically stable.

1.3. Stability of steady states for τ > 0

Proposition 1.3. If δ > β0, the trivial equilibrium point E0 = (0, 0) is asymptotically stable for all τ > 0.

2) If δ ∈]0, β0[ and β0 < 2 and N∗ < inf
(
d = ln(2)

γ , (γ2 )
1

n−1

)
, there exist τ0 > 0, such that the non trivial

(positive)steady state E∗ = (N∗, P ∗) is asymptotically for τ < τ0 and unstable for τ > τ0 and the equilibrium
point E0 = (0, 0) is unstable for all τ > 0.
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Démonstration. 1) By linearizing system (3) around the steady state E0, we obtain the following linearized
equation 

dN
dt = −δN − β0N + 2β0Nτ

dP
dt = −γP + β0N − β0Nτ

(12)

The characteristic equation is :
(λ+ γ)(λ+ δ + β0 − 2β0e

−λτ ) = 0. (13)

For the stability of E0, one need to study the position of characteristic roots of the following equation

(λ+ δ + β0 − 2β0e
−λτ ) = 0. (14)

From the proposition 1.3, E0 is asymptotically stable. For the change of stability, replacing λ = iω in (14) and
by separating the real and imaginary parts we have δ + β0 − 2β0 cos(ωτ) = 0

ω + 2β0 sin(ωτ) = 0
(15)

From (15), we have ω2 = (β0−δ)(3β0 +δ). As β0 < δ there exit any value of τ in which E0 changes the stability.
Then, we conclude that E0 is asymptotically stable for all τ > 0.

2) Suppose now that τ > 0 and δ < β0, and by linearizing the system (3) around the non trivial steady state
we have the following linearized system

dx(t)
dt = −δx(t)− h(N∗)x(t) + 2g(N∗)x(t− τ)

dy(t)
dt = −γy(t) + h(N∗)x(t)− g(N∗)x(t− τ)

(16)

where
h(N∗) = β(N∗) + β′(N∗)N∗ = (β(N)N)′N=N∗

and
g(N∗) = e−γN

∗
β(N∗)− γe−γN

∗
β(N∗)N∗ + e−γN

∗
β′(N∗)N∗ = (e−γNβ(N)N)′N=N∗

and
x = N −N∗ y = P − P ∗.

The characteristic equation is

∆(λ, τ) = (λ+ γ)(λ+ δ + h(N∗)− 2g(N∗)e−λτ ) = 0 (17)

To study the change of stability, replacing λ = iω and separating the real and imaginary parts we have δ +
h(N∗)− 2g(N∗) cos(ωτ) = 0 and ω + g(N∗) sin(ωτ) = 0.
Then

ω2 = 4g(N∗)2 − (δ + h(N∗))2 = (2g(N∗)− δ − h(N∗))(2g(N∗) + δ + h(N∗))

From the expressions of h and g, we have

2g(N∗)− δ − h(N∗) = (2e−γN
∗
− 1)β′(N∗)N∗ − 2γe−γN

∗
β(N∗)N∗ < 0

By calculations, we obtain :

2g(N∗) + δ + h(N∗) = 2e−γN
∗
β(N∗)(2− γN∗) + β′(N∗)N∗ + 2e−γN

∗
β′(N∗)N∗.
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From the expression of β, we have

2e−γN
∗
β(N∗)(2− γN∗) + 2e−γN

∗
β′(N∗)N∗ = 2e−γN

∗
β(N∗)(2− γN∗ − β0θ

n

θn +N∗n
)

= 2e−γN
∗
β(N∗)(2N∗n − γN∗ + (2− β0)θn)

As β0 < 2 and N∗ < inf
(

ln(2)
2 , (γ2 )

1
n−1

)
and from the expression of the function β, we have :

g(N∗) + δ + h(N∗) < 0

and the quantity of ω2 is positive.
As

| δ + h(N∗)

g(N∗)
|< 1,

let

τk =
1

ω0

{
arccos

(
δ + h(N∗)

g(N∗)

)
+ 2kπ

}
, k = 0, 1, 2, 3, ..., (18)

and
ω0 =

√
g(N∗)2 − (δ + h(N∗))2 (19)

Then equation (17) has a pair of purely imaginary roots ±iω0 at τ = τk, k = 0, 1, 2, 3, ....
Let λ(τ) = η(τ) + ω(τ) denote a root of (17) near τ = τk, such that η(τk) = 0, ω(τk) = ω0.
Then, we deduce the result.

2. Periodic solutions and numerical simulations

We apply Hopf bifurcation theorem to show the existence of nontrivial periodic solution of system (5), for
suitable values of parameter delay, used as a bifurcation parameter. Therefore, the periodicity is a result of
changing the type of stability, from stable stationary solution to limit cycle.

In what follows, we recall the formulation of the Hopf bifurcation Theorem for retarded differential equations.
Let the equation

dx(t)

dt
= F (α, xt), (20)

with F : R × C −→ Rn, F of class Ck, k ≥ 2 and F (α, 0) = 0for all α ∈ R and C = C([−r, 0],Rn) the
space of continuous functions from [−r, 0] into Rn. As usual, xt is the function defined from [−r, 0] into Rn by
xt(θ) = x(t+ θ), r ≥ 0 and n ∈ N∗.

The following assumptions are stated :
(M0) F of class Ck, k ≥ 2 and F (α, 0) = 0 for all α ∈ R, and the map (α,ϕ) −→ Dk

ϕF (α,ϕ) sends bounded sets
into bounded sets.
(M1) The characteristic equation

∆(α, λ) = det(λId−DϕF (α, 0) exp(λ(.)Id)), (21)

of the linearized equation of (20) around the equilibrium v = 0 :

dv(t)

dt
= DϕF (α, 0)vt, (22)

has in α = α0 a simple imaginary root λ0 = λ(α0) = i, all others roots λ satisfy λ 6= mλ0 for m ∈ Z.
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(M2) λ(α) being the branch of roots passing through λ0, we have

∂

∂α
Reλ(α)/α=α0

6= 0. (23)

Théorème 2.1. [16] Under the assumptions (M0), (M1) and (M2), there exist constants ε0 > 0 and δ0 and
functions α(ε), T (ε) and a T (ε)-periodic function x∗(ε), such that :
a) All of these functions are of class Ck−1with respect to ε, for ε ∈ [0, ε0[, α(0) = α0, T (0) = 2π, x∗(0) = 0 ;
b) x∗(ε) is a T (ε)-periodic solution of (20), for the parameter values equal α(ε) ;
c) For | α − α0 |< δ0 and | T − 2π |< δ0, any T -periodic solution p, with ‖ p ‖< δ0, of (20) for the parameter
value α, there exists ε ∈ [0, ε0[ such that α = α(ε), T = T (ε) and p is up to a phase shift equal to x∗(ε).

Normalizing the delay τ by the time scaling t → t
τ , effecting the change of variables u(t) = N(tτ) and

v(t) = P (tτ), the system (3) is transformed into
.
u (t) = τ [−δu(t)− α(u(t)) + 2e−γu(t−1)α(u(t− 1))]

.
v (t) = τ [−γv(t) + α(u(t))− e−γu(t−1)α(u(t− 1))]

(24)

where α(x) = β(x)x
By the translation z(t) = (u(t), v(t)) − (N∗, P ∗), system (24) is written as a functional differential equation
(FDE) in C := C([−1, 0],R2) :

.
z (t) = L(τ)zt + f(zt, τ) (25)

where L(τ) : C −→ R2 is a linear operator and f0 : C × R −→ R2 are given respectively by :

L(τ)ϕ = τ


−(δ + α

′
(N∗)ϕ1(0) +

(
−2γe−γN

∗
α(N∗) + 2e−γN

∗
α
′
(N∗)

)
ϕ1(−1)

−γϕ2(0) + α
′
(N∗)ϕ1(0)−

(
−γe−γN∗α(N∗) + e−γN

∗
α
′
(N∗)

)
ϕ1(−1)



f(ϕ, τ) = τ


−α(ϕ1(0) +N∗) + α

′
(N∗)ϕ1(0) + 2e−γ(ϕ1(−1)+N∗)α(ϕ1(−1) +N∗)− δN∗

+
(

2γe−γ(ϕ1(−1)+N∗)α(N∗)− 2e−γ(ϕ1(−1)+N∗)α
′
(N∗)

)
ϕ1(−1)

α(ϕ1(0) +N∗)− α′(N∗)ϕ1(0)− e−γ(ϕ1(−1)+N∗)α(ϕ1(−1) +N∗)− γP ∗

+
(
−γe−γ(ϕ1(−1)+N∗)α(N∗) + e−γ(ϕ1(−1)+N∗)α

′
(N∗)

)
ϕ1(−1).


for ϕ = (ϕ1, ϕ2) ∈ C.
The following theorem gives the existence of bifurcating periodic solutions.

Théorème 2.2. Suppose that δ ∈]0, β0[, β0 < 2 and N∗ < inf( ln(2)
2 , (γ2 )

1
n−1 ), for each k ∈ N and τ in a

neighborhood of τk, equation (24) has a family of periodic solutions pk(ε) with period Tk = Tk(ε), for the
parameter values τ = τk(ε) such that pk(0) = 0 (pk(0) = (N∗, P ∗) for the system (3)), Tk(0) = 2π

ω0
and

τk(0) = τk. Where τk, k = 0, 1, 2, ... and ω0 are given respectively in equations (18) and (19).

Démonstration. We apply the Hopf bifurcation theorem. From the expression of f in (25), we have,

f(0, τ) = 0 and
∂f(0, τ)

∂ϕ
= 0, for all τ > 0

From (17), we have :

∆(iω, τ) = 0 ⇔

 ω = ω0

and
τ = τk, k = 0, 1, 2, ...
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Figure 1. Stability of E0 = (0, 0) and the nonexistence of E∗ for δ > β0

Thus, characteristic equation (17) has a pair of simple imaginary roots λ0 = iω0 and λ0 = −iω0 at τ = τk,
k = 0, 1, 2, ....
Lastly, we need to verify the transversality condition.
From (17), ∆(λ0, τk) = 0 and ∂

∂λ∆(λ0, τk) = (λ0 +γ)(1−τkg(N∗)e−λτk) 6= 0. According to the implicit function
theorem, there exists a complex function λ = λ(τ) defined in a neighborhood of τk, such that λ(τk) = λ0 and
∆(λ(τ), τ) = 0 and

λ
′
(τ) = −∂∆(λ, τ)/∂τ

∂∆(λ, τ)/∂λ
, for τ in a neighborhood of τk, k = 0, 1, 2, .... (26)

Let λ(τ) = η(τ) + ω(τ). From (26) we have :

η
′
(τ)/τ=τk =

2ω2
0

(1 + 2τkg(N∗) cos(ω0τk))2 + (2τkg(N∗) sin(ω0τk))2
for k = 0, 1, 2, ...

By the continuity property, we conclude that, η
′
(τ)/τ=τk > 0, for k = 0, 1, 2, ....

Remarque 2.3. In Theorem 2.2, we have proved that the system (24) has a sequence of Hopf bifurcation.
We prove that the first derivative of real part η(τ) at τ = τk, k = 0, 1, 2, ... is strictly positive. To prove that
the bifurcation is subcritical or supercritical, we need to calculate the second derivative of τ at 0, such that
τ(0) = τk for τ in a neighborhood of τk, k = 0, 1, 2, ....

If τ
′′
(0) > 0 the bifurcation is supercritical and the bifurcating branch of periodic solutions are stable and if

τ
′′
(0) < 0 the bifurcation is subcritical and the bifurcating branch of periodic solutions are unstable.

With the aid of Theorem 2.1, it is also straightforward to check for possible Hopf bifurcations as we increase
the delay τ . The importance of Hopf bifurcations in this context is that at the bifurcation point a limit cycle
is formed around the fixed point. The existence of periodic solutions is relevant in haematopoiesis models,
because it implies that the number of normal or malignant stem cells levels may oscillate at different time of
the delay around a fixed point even in the absence of any treatment. Such a phenomenon has been observed
clinically [1,24,36]. The result presented here support the hypothesis that oscillations in dynamical hematological
diseases [1, 24, 36] are driven by oscillations in the stem cell compartment. We find that oscillations consistent
with those observed for cyclical neutropenia are initiated when an increase in demand for circulating blood cells
causes the stem cell compartment to undergo a sequence of Hopf bifurcation.
Neutrophil numbers reach dangerously low levels, oscillating with a period of 19−21 days in humans and 11−16
days in dogs. Longer periods of up to 50 days have been observed [10,18]. Platelet levels oscillate around their
mean value with the same period. In periodic chronic myelogenous leukemia, leukocyte levels oscillate far above
normal values with very long periods, ranging from 40− 80 days [10,14].
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Figure 2. Instability of E0 = (0, 0) and stability of E∗ for τ = 0 and δ < β0
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Figure 3. Stability of E0 for τ > 0
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Figure 4. Instability of E0 and stability of E∗ for τ < τ0
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Figure 5. Periodic solutions around the bifurcating point E∗ for τ = τ0
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Figure 6. Periodic solutions around the bifurcating point E∗ for τ = τ1

Figure 7. The curve of the functional F showing the existence of N∗.

Figure 8. The curve of the functional β with respect to x and θ.
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