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INTRODUCTION TO DIFFUSE INTERFACES AND TRANSFORMATION

FRONTS MODELLING IN COMPRESSIBLE MEDIA

Richard Saurel1, 2 and Fabien Petitpas1,2

Abstract. Computation of interfaces separating compressible materials is related to mixture cells
appearance. These mixture cells are consequences of fluid motion and artificial smearing of discon-
tinuities. The correct computation of the entire flow field requires perfect fulfillment of the interface
conditions. In the simplest situation of contact interfaces with perfect fluids, these conditions corre-
spond to equal normal velocities and equal pressures. To compute compressible flows with interfaces
two main classes of approaches are available. In the first one, the interface is considered as a sharp
discontinuity. Lagrangian, Front Tracking and Level Set methods belong to this class. The second
option consists in the building of a flow model valid everywhere, in pure materials and mixture cells,
solved routinely with a unique Eulerian algorithm [37]. In this frame, the interface is considered as a
numerically diffused zone, captured by the algorithm. There are some advantages with this approach,
as the corresponding flow model is not only valid in artificial mixture cells, but it also describes accu-
rately true multiphase mixtures of materials.
The [37] approach has been simplified by [22] with the help of asymptotic analysis, resulting in a sin-
gle velocity, single pressure but multi-temperature flow model. This reduced model presents however
difficulties for its numerical resolution as one of the equations is non-conservative. In the presence
of shocks, jump conditions have been provided by [42], determined in the weak shock limit. When
compared against experiments for both weak and strong shocks, excellent agreement was observed.
These relations have been accepted as closure shock relations for the [22] model and allowed the study
of detonation waves in heterogeneous energetic materials. Generalized Chapman-Jouguet conditions
were obtained as well as heterogenous explosives (non-ideal) detonation wave structures [36].
Oppositely to the previous example of exothermic reactions and high speed flows, endothermic reac-
tions are considered in [43] to deal with cavitating and flashing flows. In conjunction with capillary [33]
and diffusive effects, it has been possible to deal with boiling flows [25].
Extra multiphysic extensions such as dynamic powder compaction [38], solid-fluid coupling in extreme
deformations [12] have been investigated too.
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Résumé. La résolution numérique des problèmes à interfaces entre milieux compressibles est forte-
ment liée à l’apparition de ’mailles de mélange’. Celles-ci sont liées au mouvement des fluides sur mail-
lages fixes, induisant une diffusion artificielle des discontinuités de contact. La résolution numérique
de l’ensemble de l’écoulement nécessite le respect des conditions d’interface, qui correspondent pour
les fluides parfaits à l’égalité des vitesses normales et à l’égalité des pressions.
Pour résoudre les écoulements de fluides compressibles en présence d’interfaces matérielles, essen-
tiellement deux catégories de méthodes sont disponibles. Dans la première catégorie, l’interface est
considérée comme une discontinuité. Les méthodes lagrangiennes, de ’suivi de front’ et Level Set ap-
partiennent à cette catégorie. La seconde option consiste en la construction d’un modèle d’écoulement
valide partout, dans les milieux purs ainsi que dans les zones de mélange, résolu routinièrement avec un
unique solveur eulérien [37]. Dans ce contexte, les interfaces sont traitées en tant que zones de diffusion
numérique, capturées par l’algorithme. Cette approche présente certains avantages. Par exemple, le
modèle d’écoulement n’est pas seulement valable dans les mailles de mélange artificiel, mais aussi dans
les zones d’écoulement diphasiques d’origine physique et ayant des évolutions hors d’équilibre.
L’approche de [37] a été simplifiée par [22] sur la base d’une analyse asymptotique dans la limite de
forts coefficients de relaxation des vitesses et des pressions. Cette analyse conduit à un modèle à une
seule vitesse et une seule pression, mais en déséquilibre de températures. La résolution numérique de
ce modèle présente néanmoins certaines difficultés, en raison du caractère non conservatif d’une des
équations. En présence d’ondes de choc, des relations de saut ont été proposées [42] et justifiées dans la
limite des chocs faibles. Ces relations ont été validées par rapport à toutes les expériences disponibles,
à la fois pour les chocs faibles et forts. Elles ont donc été acceptées comme relations de fermeture
aux chocs pour le modèle de [22] et ont permis l’étude des ondes de détonation dans les matériaux
énergétiques hétérogènes. Des conditions de Chapman-Jouguet généralisées ont été obtenues ainsi que
la structure des ondes de détonation correspondantes (non idéales) [36].
A l’opposé des situations précédentes de transformations exothermiques dans des écoulements à grandes
vitesses, des réactions d’évaporation endothermiques ont été considérées [43] pour traiter les écoulements
cavitants et l’évaporation ’flash’. Lorsque cette modélisation de la transition de phase est combinée aux
effets capillaires [33] et diffusifs, il est possible de traiter la simulation numérique directe de l’ébullition
nucléée [25].
Enfin, d’autres extensions sont aussi envisageables, telles que la compaction dynamique des poudres [38]
ou le couplage solide-fluide en déformations extrêmes [12].

Introduction

The computation of interfaces and waves dynamics with compressible materials has many fundamental and
industrial applications, ranging from fluid mechanics and astrophysics to chemical, mechanical and environ-
mental engineering. When dealing with compressible materials the main issue is related to the appearance of
mixture cells. These mixture cells are consequences of fluid motion and artificial smearing of discontinuities.
The correct computation of the entire flow field requires perfect fulfillment of the interface conditions. In the
simplest situation of contact interfaces with perfect fluids, these conditions correspond to equal normal veloc-
ities and equal pressures. To compute compressible flows with interfaces two main classes of approaches are
available. In the first one, the interface is considered as a sharp discontinuity. To avoid as far as possible
interface numerical smearing several options are possible:

• Lagrangian and ALE methods (see for example [11, 19]). In this context, the computational mesh
moves and distorts with the material interface. However, when dealing with fluid flows, deformations
are unbounded and resulting mesh distortions may result in computational failure [45].

• Interface Reconstruction methods use a fixed mesh with an additional equation for tracking and recon-
structing the material interface. In the volume of fluid (VOF) approach [20], each computational cell
is assumed to possibly contain a mixture of fluids and the volume occupied by each fluid is represented
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by the volume fraction, transported by the flow. This method is widely used for incompressible flows
as there is no thermodynamics to compute in mixture cells [17]. For compressible flows, extra energy
equations are used as well as pressure relaxation procedures [4,29]. Multiphase flow ingredients are used
with these methods that come quite close to the diffuse interface methods discussed later.

• Level-Set methods [30, 31, 47] are very popular methods to spatially locate interfaces. Special manage-
ment of the interfaces is needed to preserve jump conditions. Relevant work in this direction was done
by [13] with the Ghost Fluid Method.

• Front Tracking methods consider explicit interface tracking over a fixed Eulerian mesh [15,27].

With the various preceding methods, the interface is managed with a specific treatment, having consequences
with respect to coding complexity, conservation issues, extra physics extension capabilities and robustness
especially in severe conditions. The second class of approaches follows another philosophy, closer to the one of
capturing methods. Capturing methods are fundamental contributions of [52] and [16]. The aim was to solve
the same equations with the same numerical scheme in both smooth and discontinuous flow regions. Pioneer
works in ?’interface capturing’ or ?’diffuse interfaces’ modelling areas were done about forty years latter by [23].
Indeed, interfaces computation posed extra difficulties linked to thermodynamic state computation in artificial
mixture zones. Determination of thermodynamic flow variables in these mixture zones has been achieved on
the basis of multiphase flow modelling by [37]. Some advantages appeared:

• As already mentioned, the same equations are solved everywhere (interfaces, shocks, expansions waves)
with a unique flow solver.

• These models and methods are able to dynamically create interfaces (not present initially) as for example
in cavitating flows [41,43].

• These methods are also able to deal with interfaces separating pure fluids and fluid mixtures, as for
example when a granular material is in contact with a fluid [9, 38].

• As this approach includes the two velocities flow model of [2] it is also possible to compute velocity
non-equilibrium bubbly or granular flows in conjunction with material interfaces [14, 39].

In the same period of time, a reduced model has been built by [22]. Here, pressure and velocity equilibrium is
assumed, rendering the resulting model unable to deal with velocity non-equilibrium mixtures, but resulting in
a more appropriate model for interface computations.
As it is more convenient to add extra physics in a single velocity context, multiphysics capabilities have been
considered in the [22] framework. Surface tension modelling [33], shock and detonation computation in het-
erogeneous materials [36, 42], phase transition [43], elastic solid - fluid coupling [12], powder compaction [38],
interpenetration effects at unstable interfaces [40] are examples of such extensions.
To summarize, diffuse interface modelling allows quite advanced multiphysics extensions still solving a unique
set of hyperbolic partial differential equations with a unique Godunov type flow solver.
The aim of the present paper is not to summarize all these possible extensions but to give a comprehensive
introduction to the ’diffuse interface’ approach. To do this, Section 1 presents a hyperbolic non-equilibrium
two-phase flow model that is a good starting point to describe natural or artificial two-phase mixtures. The [22]
model is presented in Section 2 as a reduced version of the previous non-equilibrium model. This model is
the simplest candidate for diffuse interface modelling with non-barotropic fluids. The [22] model being non
conservative, shock relations have to be determined as well as appropriate numerical schemes. The [42] shock
relations are presented in the same section and the relaxation algorithm of [44] is summarized in Section 3.
Some extensions are then presented. First, in Section 4 with capillary effects. Second in Section 5 with phase
transition modelling and last with detonation modelling in Section 6. Section 7 deals with open issues, such
as low Mach number flows with diffuse interface models, diffuse interfaces sharpening and extra multiphysics
extensions.
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1. Total disequilibrium mixtures

The [22] model we are going to use for the various multiphysics extensions comes from a more general model,
out of mechanical, thermal and chemical equilibrium. The non-equilibrium mixture model presented hereafter
consists in a symmetric formulation of the [2] model developed in [39]:
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(1)

The second phase obeys a symmetrical set of equations.
Notations are conventional: αk, ρk, uk, pk represent respectively the volume fraction, the density, the velocity
and the pressure of phase k. The total energy of phase k is defined by Ek = ek + 1/2u2

k, with ek the internal
energy of phase k. This model is hyperbolic and fulfills the second law of thermodynamics. The closure relations
for the relaxation parameters ( µ and λ ) as well as for interfacial variables estimates uI , u

′

I , pI , p
′

I are given
in the same reference. This model is able to describe two-phase mixtures out of velocity equilibrium. Waves
propagation is preserved thanks to the hyperbolic character of the equations and to the presence of relaxation
effects. This model can be used for the computation of interface problems with perfect fulfillment of interface
conditions. This goal can be reached with two different options:

• The first option consists in using stiff mechanical relaxation parameters µ and λ [37].

• The second one is based on non-conservative terms uI
∂α1

∂x
and pI

∂α1

∂x
[1].

The first method is simple and robust. The second one is more subtle but renders possible the consideration
of zones out of velocity equilibrium in conjunction with macroscopic interfaces where normal velocities and
pressures have to be equal. In particular, it is able to deal with bubbles clouds crossing through material
interfaces.
Consideration of extra physics is this formulation is possible but easier in the framework of single velocity
formulations. The rest of this paper places in this context, as single velocity models are suitable for many
applications.

2. Mechanical equilibrium model, diffuse interfaces

The [22] model is obtained as zero order asymptotic limit of the previous model in the limit of relaxation
parameters µ and λ tending to infinity. Therefore it corresponds to the first option mentioned previously with
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the non-equilibrium model and stiff mechanical relaxation. It reads:
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The total energy is defined as E = Y1e1 + Y2e2 + 1/2u2 where Yk = (αkρk) /ρ represent the mass fraction of
phase k and ρ = α1ρ1 + α2ρ2 the mixture density. This model is hyperbolic too with the same wave speeds as
the gas dynamic equations but with the [53] sound speed, that presents a non monotonic behaviour with respect
to the volume fraction: 1/

(

ρc2w
)

= α1/
(

ρ1c
2
1

)

+α2/
(

ρ2c
2
2

)

. The equation of state allowing the thermodynamic
closure is obtained from the mixture energy definition and the pressure equilibrium condition. This equation of
state involves at least three arguments: p = p (ρ, e, α1) . For example, when each phase obeys the stiffened gas
equation of state (see [26] for parameters determination),

pk = (γk − 1) ρkek − γkp∞,k (3)

The mixture equation of state then reads:

p (ρ, e, α1, α2) =

ρe−

(

α1γ1p∞,1

γ1 − 1
+

α2γ2p∞,2

γ2 − 1

)

α1

γ1 − 1
+

α2

γ2 − 1

(4)

Parameters γk and p∞,k are characteristic constants of material k. As this model involves a single pressure but
two mass equations and a volume fraction equation, it is possible to determine two temperatures (Tk = Tk (p, ρk))
and two entropies. This feature is useful for phase transition modelling.
This model is an excellent candidate for interface problem computations. However, two difficulties at least are
present:

• Rankine-Hugoniot relations cannot be determined in a conventional way as the volume fraction equation
is non-conservative. With other sets of variables (entropy for example), it is no more possible to obtain
meaningful jump conditions.

• The numerical resolution of this model is intricate, due to the presence of the same equation.

The first issue has been considered in [42]. Shock jump conditions have been determined in the weak shock
limit. When compared against experimental data of shock speeds in mixtures of materials, for shocks of
arbitrary strength (in the megabar range), excellent agreement was obtained. All available data in the Russian
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Figure 1. Comparison between experiments (symbols) and results obtained from Rankine-
Hugoniot relations (5) for the Epoxy-Spinel mixture. Excellent agreement is observed. The
same agreement is observed for all mixtures free of phase transition having experimental data
in the Russian and American databases.

and American databases have been used in this aim. The corresponding algebraic system reads:

[αkρk (u− σ)] = 0, for k = 1, 2

[ρu (u− σ) + p] = 0

ek − e0k +
p+ p0

2
(vk − v0k) = 0, for k = 1, 2 with vk = 1/ρk

(5)

A comparison example is given in the Figure 1 for a representative mixture of materials, made of epoxy and
spinel. Mixture composition and equations of state parameters are given in [42]. The second difficulty, related
to the numerical approximation of System (2) has been addressed in [44] with the strategy summarized in the
next section.
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3. Simple and efficient relaxation method

To solve System (2), an extended system is considered, that seems more complex at a first glance. However,
with this extended system, there is no difficulty to preserve volume fraction positivity. Also, the sound speed
with the new model is monotonic with respect to the volume fraction. Last, the Riemann problem resolution is
straightforward as will be shown later, as the volume fraction is constant across the right and left facing waves.
Nevertheless, to recover solutions of the mechanical equilibrium model (2), stiff pressure relaxation has to be
used, preserving volume fraction positivity too. Therefore, the model is solved in a sequence of three steps:

• Solve the extended pressure non-equilibrium flow model, in the abscence of relaxation terms, with
appropriate hyperbolic solver.

• Relax the pressure toward mechanical equilibrium and determine the volume fraction at pressure equi-
librium.

• Compute the pressure with the mixture equation of state (4) based on the relaxed volume fraction and
total energy, that results of the additional conservation law (7). Then reset the internal energies with
the help of the mixture pressure, phases densities and appropriate equations of state.

Each step is summarized hereafter. The pressure non-equilibrium model reads:
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(6)

This system can be easily derived from System (1) in the limit of stiff velocity relaxation.
With System (6) combination of the internal energy equations with mass and momentum equations results in
the additional mixture energy equation:

∂ρ

(

Y1e1 + Y2e2 +
1

2
u2

)

∂t
+

∂

[

ρ

(

Y1e1 + Y2e2 +
1

2
u2

)

+ (α1p1 + α2p2)

]

u

∂x
= 0 (7)

This extra equation is important during numerical resolution, in order to correct inaccuracies due to the nu-
merical approximation of the non-conservative internal energy equations in the presence of shocks.
This model exhibits a nice feature regarding the mixture sound speed that reads,

c2f = Y1c
2
1 + Y2c

2
2

and has a monotonic behaviour versus volume and mass fractions. It represents the frozen mixture speed of
sound with respect to the pressure relaxation effects. The model is thus hyperbolic with waves speeds: u+ cf ,
u− cf and u.
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System (6) is aimed to replace direct resolution of System (2) by the three steps method mentioned previously.
During the first step, System (6) is solved in absence of relaxation terms (µ = 0). Then relaxation terms are
considered and are assumed stiff. In other word, the mechanical equilibrium solution is obtained at the end
of the second step. It can be proved by asymptotic analysis that such strategy yields precisely to System (2)
(see [44] Appendix B for the details).
Numerical resolution of the pressure non-equilibrium model in the limit of stiff pressure relaxation is then
addressed. In regular zones, this model is self consistent. But in the presence of shocks the internal energy
equations are inappropriate. To correct the thermodynamic state predicted by these equations in the presence
of shocks, the total mixture energy equation is used. This correction is valid on both sides of the interface,
when the flow tends to the single phase limit. The details of this correction will be examined further. For now,
the pressure non-equilibrium system (6) is augmented by the redundant equation (7).

3.1. Hyperbolic solver

The hyperbolic solver is aimed to solve System (6-7) in the absence of relaxation terms (µ = 0). The first
ingredient corresponds to the Riemann solver used to compute the fluxes that cross each cell boundary. Then
the variables are updated with a Godunov type method.

3.1.1. HLLC Riemann solver

The [51] solver is considered at cell boundaries, separating left (L) and right (R) states. This solver involves
3 waves, is genuinely positive and valid for any convex equation of state. It is thus an excellent candidate
for the various applications we are dealing with. The left- and right-facing waves speeds are readily obtained,
following [10] estimates,

SR = max (uL + cL, uR + cR) , SL = min (uL − cL, uR − cR) ,

where the sound speed still obeys the frozen sound speed relation, c2R,L = Y1R,Lc
2
1R,L + Y2R,Lc

2
2R,L.

The intermediate wave speed is estimated under HLL approximation,

SM =

(

ρu2 + p
)

L
−
(

ρu2 + p
)

R
− SL(ρu)L + SR(ρu)R

(ρu)L − (ρu)R − SLρL + SRρR
,

with the mixture density and mixture pressure defined previously.
From these wave speeds, the following variable states are determined,

(αkρk)
∗

R = (αkρk)R
SR − uR

SR − SM
, (αkρk)

∗

L = (αkρk)L
SL − uL

SL − SM
,

p∗ = pR + ρRuR (uR − SR)− ρ∗RSM (SM − SR) ,

with ρ∗R,L = (α1ρ1)
∗

R,L + (α2ρ2)
∗

R,L and,

E∗

R =
ρRER(uR − SR) + pRuR − p∗SM

ρ∗R(SM − SR)
, E∗

L =
ρLEL(uL − SL) + pLuL − p∗SM

ρ∗L(SM − SL)
,

with E = Y1e1 + Y2e2 +
1

2
u2. The upperscript ’*’ stands for the Riemann problem solution states.

The volume fraction jump is readily obtained, as in the absence of relaxation effects the volume fraction is
constant along fluid trajectories,

αk
∗

R = αkR, αk
∗

L = αkL.

As the volume fraction is constant across left- and right-facing waves, the fluid density is determined from the
preceding relations:

ρ∗kR,L = ρkR,L

uR,L − SR,L

SM − SR,L



132 ESAIM: PROCEEDINGS

Internal energy jumps are determined with the help of approximate Hugoniot relations for System (6). Let us
consider the example of fluids governed by the stiffened gas EOS (3). With the help of the EOS, the phasic
pressures are constrained along their Hugoniot curves as functions only of the corresponding phase density,

p∗kR,L(ρ
∗

kR,L) =
(

pkR,L + p∞k

) (γk − 1)ρkR,L − (γk + 1)ρ∗kR,L

(γk − 1)ρ∗kR,L − (γk + 1)ρkR,L

− p∞k

The phases internal energies are then determined from the EOS: e∗kR,L = e∗kR,L(p
∗

kR,L, ρ
∗

kR,L) .
Equipped with this solver, the next step is to develop a Godunov type scheme.

3.1.2. Godunov type method

In the absence of relaxation terms, the conservative part of System (6) is updated with the conventional
Godunov scheme:

Un+1
i = Un

i −
∆t

∆x

(

F ∗(Un
i , U

n
i+1)− F ∗(Un

i−1, U
n
i )

)

with U = ((αρ)k, ρu, ρE)
T

and F = ((αρ)ku, (ρu+ (α1p1 + α2p2)) , (ρE + (α1p1 + α2p2))u)
T
. The volume

fraction equation is updated with the Godunov method for advection equations:

αk
n+1
i = αk

n
i −

∆t

∆x

(

(uαk)
∗

i+1/2 − (uαk)
∗

i−1/2 − αk
n
i,l(u

∗

i+1/2 − u∗

i−1/2)
)

This scheme guarantees volume fraction positivity during the hyperbolic step. Obviously, higher order extension
of the Godunov method can be considered.
Regarding the non-conservative energy equations, there is no hope to determine accurate numerical approxima-
tion in the presence of shocks [21]. Therefore, we use the simplest approximation of the corresponding equations
by assuming the product (αp)k,

n

i
constant during the time step:

(αρe)k
n+1

,i = (αρe)k,
n

i
−

∆t

∆x

(

(αρeu)k,
∗

i+1/2
− (αρeu)k

∗

,i−1/2 + (αp)k,
n

i

(

u∗

i+1/2 − u∗

i−1/2

))

The lack of accuracy in the internal energy computation resulting from the present scheme is not so crucial.
The internal energies will be used only to estimate the phases pressures at the end of the hyperbolic step, before
the relaxation one. The relaxation step will give a first correction to the internal energies, in agreement with
the second law of thermodynamics. A second correction will be made with the help of the total mixture energy.
The details of these two steps are described in the next subsections.

3.2. Relaxation step

This step is of major importance to fulfill interface conditions in non-uniform velocity and pressure flow
conditions. It also forces the solution of the pressure non-equilibrium model (6) to converge to that of the
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equilibrium model (2). In the relaxation step the system to consider reads,
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in the limit µ → +∞.
After some manipulations the internal energy equations become:

∂ek
∂t

+ pI
∂vk
∂t

= 0

This system can be written in integral form as,

ek − e0k + p̂Ik(vk − v0k) = 0

with p̂Ik = 1

v
k
−v0

k

∆t
∫

0

pI
∂vk

∂t dt.

Determination of pressure averages has to be done in agreement with thermodynamic considerations.
By summing the internal energy equations we have:

∑

k

(

Ykek − Yke
0
k

)

+
∑

k

p̂Ik(Ykvk − Ykv
0
k) = 0

As the system conserves energy,
∑

k

(

Ykek − Yke
0
k

)

= 0.

On the other hand, mass conservation implies,
∑

k

(Ykvk − Ykv
0
k) = 0.

Therefore, the identity,
∑

k

(

Ykek − Yke
0
k

)

+
∑

k

p̂Ik(Ykvk − Ykv
0
k) = 0

is fulfilled if the various pressure averages are taken equal, i.e.,

p̂Ik = p̂I = p.
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This pressure average estimate also agrees with the entropy inequality.
The system to solve is thus composed of equations,

ek(p, vk)− e0k(p
0
k, v

0
k) + p̂I(vk − v0k) = 0, for k = 1, 2 (9)

which involves 2+1 unknowns, vk (k = 1, 2) and p. Its closure is achieved by the saturation constraint,

∑

k

αk = 1,

that is rewritten under the form,
∑

k

(αρ)kvk(p) = 1. (10)

As the (αρ)k are constant during the relaxation process, this system is replaced by a single equation with a
single unknown (p). With the help of the EOS (3) the energy equations (9) become,

vk(p) = v0k
p0k + γkp∞k + (γk − 1)p̂I
p + γkp∞k + (γk − 1)p̂I

and thus the only equation to solve (for p) is (10).
Once the relaxed pressure is found, the phases specific volumes and volume fractions are determined. However,
there is no guarantee that the mixture EOS or the mixture energy be in agreement with this relaxed pressure. In
order to respect total energy and correct shock dynamics on both sides of the interface, the following correction
is employed.

3.3. Reset step

As the volume fractions have been estimated previously by the relaxation method, the mixture pressure can
be determined from the mixture EOS based on the mixture energy which is known from the solution of the
total energy equation. As the mixture total energy obeys a conservation law, its evolution is accurate in the
entire flow field and in particular at shocks.
Again considering fluids governed by the stiffened gas EOS, the mixture EOS is given by (4). This EOS is
valid in pure fluids and in the diffuse interface zone. As it is valid in pure fluids and based on the total energy
equation, it guarantees correct wave dynamics on both sides of the interface. Inside the numerical diffusion zone
of the interface, numerical experiments show that the method is accurate too, as the volume fractions used in
the mixture EOS have a quite accurate prediction from the relaxation step.
To summarise, the pressure at the end of the time step is computed with the mixture EOS (4) as:

pn+1 = p(ρn+1, en+1, αrelax
k ), (11)

where ρn+1 and en+1 represent respectively the mixture density and mixture internal energy at time tn+1, while
αrelax
k represent the volume fractions determined at the end of the relaxation step. Once the mixture pressure

is determined the internal energies of the phases are reset with the help of their respective EOS before going to
the next time step,

en+1

k = ek(p
n+1, αkρk

n+1, αk
n+1), (12)

where the volume fractions at the new time correspond to those determined at the end of the relaxation step
(αk

n+1 = αk
relax).
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3.4. Shock propagation in multiphase mixture

When the flow involves material interfaces only, the preceding algorithm is particularly simple and efficient.
But in some situations, physical mixtures of materials are under interest, eventually in the presence of shocks.
This occurs for example in the study of shocks and detonation waves in heterogeneous materials. In this
situation, the shock energy has to be apportioned correctly among the phases; otherwise the shock speeds as
well as the various jumps are incorrect. The goal is thus to impose the shock conditions (5) in the pressure
equilibrium solution. This issue has been addressed in [34] and a solution method was given in [36]. It consists
in replacing Equations (9) in the previous pressure relaxation step by,

ek(p, vk)− e0k(p
0
k, v

0
k) +

p+ p0
2

(vk − v0k) = 0, for k = 1, 2 (13)

where the state with superscript 0 indicates the Hugoniot pole. This state has to be constant inside the shock
layer. To do this, additional evolution equations are used to replace the internal energy equations of System
(6), in the shock layer only. These equations read:



















∂v0k
∂t

+ u
∂v0k
∂x

= 0, for k = 1, 2

∂p0
∂t

+ u
∂p0
∂x

= 0

(14)

Thanks to (13) and (14) the method converges to the correct shock state.

3.5. Summary of the numerical method

The numerical method can be summarized as follows:

• At each cell boundary, solve the Riemann problem of System (6) in the absence of relaxation terms with
the HLLC solver or any positive Riemann solver.

• Evolve all flow variables with the Godunov method or higher order extensions.
• Determine the relaxed pressure and especially the volume fraction by solving Equation (10) with the
help of the Newton method. Equations (9) are used if interfaces separate pure fluids. If one of the
media corresponds to a multiphase mixture, Equations (9) are replaced by (13). In this instance, (14)
have to be solved in the shock layer. The shock layer is detected thanks to shock indicators such as [50]
(see paragraph 14.6.4) or [28].

• Compute the mixture pressure with Equation (4).
• Reset the internal energies with the computed pressure with the help of their respective EOS (12).
• Go to the first item for the next time step.

3.6. Computational example

A non-conventional computational example is shown in the Figure 2. A piston impacts a liquid column with
a curved liquid-gas interface. A Richtmyer-Meshkov type instability appears, as expected. Unexpected features
appear too, as cavitation pockets are created in the liquid domain, due to liquid jet presence. To deal with
such a flow, the model has to deal with material interfaces, shocks and expansions waves. It must also predict
dynamic interfaces appearance. Cavitation pockets are here consequences of the small amount of gas present in
the liquid that grows under expansion effects as a result of the pressure equilibrium condition.
On the basis of the [22] model, several extensions have been done. Some of them are summarized in the rest
of the paper.
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Figure 2. Richmyer-Meshkov instability with a cavitating liquid and a non miscible gas.

4. Capillary effects

The following capillary flow model is a slight variation of the [33] model where the CSF method of [5] was
embedded in the compressible Kapila model. The corresponding system reads:
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(15)

Where σ represents the surface tension coefficient.
This formulation presents at least two advantages:

• Compressible effects are present in conjunction to surface tension ones.
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Figure 3. Comparison of computed drop formation under gravity effects (light lines) versus
experimental photograph (grey contours). System (15) is solved everywhere, in pure liquid,
pure gas and at the interface.

• There is no interface width, compared to the [6] second gradient theory that needs too fine resolution
for practical applications.

A computation example and comparison with experiments is shown in the Figure 3. At the discrete level, when
capillary effects are considered, care has to be done with the following specific points:

• The pressure is no longer constant at the contact discontinuity. The local interface curvature and surface
tension effects are accounted for in the Riemann solver. Details are given in [33].

• Capillary effects cannot be activated with initial discontinuities in the mass fractions. Thus, the first
computational time steps (less than 10) are acheived without surface tension, in order that artificial
smearing render discrete mass fraction gradients available.

5. Phase transition

This extension has been done in [43] on the basis of entropy production examination. In the absence of
capillary effects, the resulting system reads,







































































































∂α1

∂t
+ ~u ·

~∇(α1) =
(ρ2c

2
2 − ρ1c

2
1)

ρ1c
2
1

α1

+
ρ2c

2
2

α2

div(~u) + ρν(g2 − g1)

c21
α1

+
c22
α2

ρ1c
2
1

α1

+
ρ2c

2
2

α2

+H(T2 − T1)

Γ1

α1

+
Γ2

α2

ρ1c
2
1

α1

+
ρ2c

2
2

α2

∂α1ρ1
∂t

+ div (α1ρ1~u) = ρν (g2 − g1)

∂α2ρ2
∂t

+ div (α2ρ2~u) = −ρν (g2 − g1)

∂ρ~u

∂t
+ div (ρ~u⊗ ~u) + ~∇(p) = 0

∂ρE

∂t
+ div((ρE + p) ~u) = 0

(16)



138 ESAIM: PROCEEDINGS

Figure 4. Cavitating flow around a hypervelocity underwater missile. Combustion gases are
shown in yellow contours and are in contact with vapour, in blue colour. The vapour is separated
from the liquid (not shown) by an evaporating interface. Two different types of interfaces are
thus present in this example. The results are issued from [35].

with the following notations: gk = hk − Tksk represents the Gibbs free energy, H represents the temperature
relaxation parameter and ν the mass transfer kinetics.
Some comments are due regarding the volume fraction equation. The first term in the right hand side, present
in the [22] model, represents mechanical relaxation effects, present in all zones where the velocity divergence
is non zero (shocks, compressions, expansions). The second term represents volume variations due to mass
transfer, in a context where both phases are compressible. The last group of terms represents dilatation effects
due to heat transfer. Γk represents the Gruneisen coefficient of the phase k.
The model needs thermodynamic parameters on one hand and kinetics ones, such as H and ν on the other
hand. In the present formulation, each fluid has its own thermodynamics and the equation of state parameters
are determined on the basis of the phase diagram, as detailed in [26]. Regarding kinetic parameters, we have
learnt in the beginning of this paper that it was possible to fulfill interface conditions of simple contact by using
infinite mechanical relaxation parameters. Here, infinite thermal and mass transfer kinetics are used (infinite H
and ν). It means that local thermodynamic equilibrium is assumed. This renders possible the consideration of
phase transition fronts propagating at global finite rate [43]. It is shown in this reference that phase transition
fronts propagate in metastable liquids at the characteristic speed of the full equilibrium system. This is indeed
the system that is solved at the evaporating interface. It consists in the mixture mass, momentum and energy
equations, closed by pressure, temperature and Gibbs free energy equilibrium conditions. The associated sound
speed is very low and the lower CJ point conditions [7, 8, 48, 49] merge with the aforementioned characteristic
speeds.
Infinite heat and mass transfer kinetic parameters have been used in the example shown in Figure 4 at liquid-
vapour interfaces when the liquid is overheated (metastable). At vapour-non condensable gas interfaces, the
same kinetic parameters have been set to zero, in order to fulfill contact interface conditions.



ESAIM: PROCEEDINGS 139

6. Detonations

To deal with the detonation of condensed energetic materials, possibly heterogeneous, the same flow model as
previously can be used except regarding the equations of state that must contain appropriate reference energy
yielding exothermic heat of reaction. For example, the stiffened gas equation of state (3) now expresses as,

pk = (γk − 1)ρk(ek − qk)− γkp∞k

where qk represents the reference energy.
It is then necessary to use finite rate heat and mass transfer coefficients, respectively H and ν. Let us present
first an illustrative example. A detonation tube is filled with a heterogeneous explosive mixture. A shock wave is
emitted by a detonator and transforms to a detonation that propagates in the explosive, loaded with aluminium
particles.
Material interfaces are present too as 7 different materials have to be considered. As previously mentioned, the
same equations are solved everywhere with the same flow solver. The results shown in the Figure 5 are taken
from [36]. Starting from the flow model expressed in Section 5, it is possible to determine generalized Chapman
Jouguet relations, yielding non-ideal detonation behaviour even in pure 1D plannar flow configuration. Indeed,
expressing the flow model between the shock front and the sonic surface, in the detonation wave frame of
reference, the following expression for the velocity divergence is obtained:

dū
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The generalized Chapman Jouguet relation appears immediately. On the sonic surface characterized by,

ū = c,
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Figure 5. Mixture density contours at the initial time and at three successive times showing
detonation dynamics and interfaces motion for the detonation tube problem.

necessarily,
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Thus, when heat transfers are absent the conventional CJ relation is recovered: ṁ1 = 0 when ū = c.
These extended CJ relations have non trivial consequences. While the CJ detonation velocity is considered as
the maximum admissible detonation speed, heterogeneous explosives can overpass this limit. This theoretical
fact has been checked by [3] on the basis of experiments done at Sarov in Russia, with the help of various liquid
explosive mixtures loaded with inert solid particles. The heat transfers are not responsible for the increase



ESAIM: PROCEEDINGS 141

in detonation velocity. The explanation comes from the fact that, in temperature non-equilibrium conditions
the phases have unconstrained dilatation. Indeed, due to the fast phenomenon occurring in the reaction zone
and due to the quite large particle sizes, thermal equilibrium assumed in conventional CJ and ZND models is
not justified and yields to underestimated detonation speeds, as a consequence of constrained dilatation of the
various substances.
The present flow model, CJ conditions and ZND structure have been recently investigated in details by [46] for
the study of highly non-ideal ammonium nitrate explosives, showing in particular impressive comparison with
experimental detonation records in a broad range of confinements and wide range of charge diameters.
Let’s now turn back to the issue of kinetic coefficients determination (H and ν). In drastic flow conditions
occuring in detonations, it is not possible to determine by direct measurements such parameters. In [3], analysing
detonation experiments based on explosive liquids loaded with particles of different sizes, from 0.1 to 100 µm it
appeared that heat exchanges are negligible (H=0). This is due to the short particle life time in the detonation
reaction zone. In [46] an inverse method based on detonation front curvature is given, allowing accurate
determination of the decomposition rate kinetics ν. The method given in this reference is a 2D extension of the
well known [54] streamline method for curved detonation waves, widely used to find decomposition kinetics of
explosives.

7. Perspectives

Diffuse interface methods are now mature enough to deal with realistic and advanced applications. There
are however many fundamental issues to address:

• The shock relations (5) have been demonstrated for weak shocks. They have been compared to experi-
mental data for strong shocks (in the megabar range) showing excellent agreement too [42]. However,
there is a lack of mathematical proof for strong shocks.

• The numerical method summarized in Section 3 and its variants [32] are very efficient for high speed
flows. However, many applications deal with low Mach number flow conditions and there is a clear need
for efficient algorithms at all Mach number for diffuse interface models. Efforts in this direction have
been done by [24].

• Another numerical issue deals with long time evolutions, where interfaces become too smeared with up-
wind scheme computations. There is thus a clear need to sharpen interfaces without losing conservation
properties.

• There are also extra mathematical modelling issues when dealing with extra physics extensions, such
as for example, hot spot modelling in shock to detonation transition in the area of combustion, solid
fluid coupling [12] to make a bridge between fluid and solid mechanics, the direct numerical simulation
of boiling flows in the area of energetics.

• Another important modelling issue is related to velocity drift effects restoration in diffuse interface
formulations. Attempts in this direction have been done by [18], [38] and [40].

The first author is particular grateful to Stéphane Gerbi and Christian Bourdarias for their kind invitation at the AMIS
2012 conference in Chambery.
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