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MODERATE DEVIATIONS OF FUNCTIONAL OF MARKOV PROCESSES

S.Valère Bitseki Penda 1, Hacène Djellout 2, Laure Dumaz3, Florence
Merlevède4 and Frédéric Proïa 5

Abstract. This paper presents recent developments on the principle of moderate deviations for some
classes of dependent random variables.

1. Introduction
This paper groups the contributions of the speakers of the session dedicated to moderate deviations of

functional of markov processes organized during the Journées MAS, which took place in Clermont-Ferrand in
August 2012.

The principle of moderate deviations (PDM, in short) is a subject of classic study of the probability theory.
Indeed, in the study of the limit theorems of a probability or statistical model, the PDM is one of main questions
that we look, after the laws of large numbers, the central limit theorem (CLT, in short) and the law of the
iterated logarithm.

The MDP can be seen as an intermediate behavior between the CLT and large deviations principle (LDP, in
short). Usually, the MDP exhibit a simpler rate function (quadratic) inherited from the approximated Gaussian
process, and holds for a larger class of dependent random variables than the large deviations principle.

The LDP and MDP of sums of random variables is now a wide and fastly growing branch of probability
theory. It was created initially in the framework of the theory of sums of independent identically distributed
random variables and then extended to a wide class of random processes, i.e., random functions in one variable,
with some general conditions of weak dependence traditional for the theory of random processes.

We refer to Dembo and Zeitouni [13], for an exposition of the general theory of large deviations and limit
ourself below to the statement of some important facts and definitions which are useful for our needs.
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It is best to think of a specific example to clarify the idea

Example 1.1. (Cramér-Chernoff’s Theorem) Let X1, X2, ... a sequence of i.i.d. centered real valued random
variables. Define Sn =

∑n
i=1Xi. Notice that

L(t) := n−1 logE(etSn) = logE(etX1) .

Whence, by the Gärtner-Ellis theorem, for all Borelians A,

− inf
t∈Ao

I(t) ≤ lim inf
n

1
n

logP
(
Sn
n
∈ A

)
≤ lim sup

n

1
n

logP
(
Sn
n
∈ A

)
≤ − inf

t∈Ā
I(t) .

where I is the Fenchel-Legendre dual of L given by I(x) = supt>0(tx− logE(etX1)).

Remark 1.2. The LDP is not distribution free, it holds for a small class of dependent sequences (see Bryc-
Dembo [6]), it requires the existence of moment generating function and, it is restricted to stationarity.

Example 1.3. (Heuristic for the MDP). Consider again (Xi)i≥1 a sequence of i.i.d. centered real valued
random variables. Take an → 0 and nan → ∞ (instead of an = n−1). Make blocks Yk,n of size [nan]. Hence
Sn ∼ Y1,n + · · ·+ Y[a−1

n ],n, and

an logE(etSn/
√
nan) ∼ an log

(
E(etY1,n/

√
nan)

)1/an
.

Under conditions, via the convergence of moments in the CLT,

logE(etS[nan]/
√
nan)→ σ2t2

2 ,

where σ2 = E(X2
1 ). Therefore, by the Gärtner-Ellis theorem, for all Borelians A,

− inf
t∈Ao

I(t) ≤ lim inf
n

an logP
(
√
an

Sn√
n
∈ A

)
≤ lim sup

n
an logP

(
√
an

Sn√
n
∈ A

)
≤ − inf

t∈Ā
I(t) ,

where I(x) = x2/(2σ2).
In the i.i.d. setting, we refer to Arcones [1], [2], and to Eichelsbacher-Löwe [16] for necessary and sufficient

conditions for the MDP to hold.

Remark 1.4. MDP is distribution free, it holds for a larger class of dependent sequences, it does not require
the existence of the moment generating function, it is non restricted to stationarity.

Before presenting the plan of our paper, let us now give the precise definition of a MDP: let (an)n≥0 be a
positive sequence such that

an −→
n→∞

0, and nan −→
n→∞

∞. (1.1)

Definition 1.5. A family of random variables {Zn, n > 0} with values in a topological space X equipped with σ-
field B satisfies the MDP with speed an satisfying (1.1) and good rate function I(·) if the level sets {x, I(x) ≤ α}
are compact for all α <∞, and for all Γ ∈ B

− inf
t∈Γo

I(t) ≤ lim inf
n→∞

an logP(
√
anZn ∈ Γ) ≤ lim sup

n→∞
an logP(

√
anZn ∈ Γ) ≤ − inf

t∈Γ̄
I(t)

where Γo (resp. Γ̄) denotes the interior (resp. closure) of Γ in X .
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The paper is organized as follows. In Section 2 we state the MDP for weakly dependent random variables
with applications to functions of mixing sequences, Markov chains, and functions of linear process. Section 3 is
devoted to the MDP for the Durbin-Watson statistic related to the first-order autoregressive process. Section 4
is dedicated to the MDP for bufircating Markov chains and application to the bifurcating autoregressive process.
Section 5 is very different from subjects approached on the previous sections. It concerns essentially the large
deviations of the true self-repelling motion.

2. Moderate deviations for weakly dependent sequences
In this section, we are interested in the MDP and its functional form for a class of weakly dependent sequences.

Examples that can be treated this way include some classes of Markov chains, iterated Lipschitz models and
functions of linear processes with absolutely regular innovations.

Concerning the traditional LDP, it is known from the paper by Bryc and Dembo (1996) [6] that it is not
satisfied by many classes of weakly dependent random variables. This is the reason why it is convenient to look
at MDP.

We shall use the new developed Bernstein-type inequalities to obtain sharp moderate deviation asymptotic
results for some classes of dependent random variables.

GivenX1, X2, ... a sequence of centered real valued random variables, our aim is to give dependence conditions
to get the MDP for the partial sum and the normalized partial sum processes

Sn =
n∑
i=1

Xi or Wn(·) =


[nt]∑
i=1

Xi, t ∈ [0, 1]


suitably normalized (Wn is an element of D([0, 1]), the space of functions on [0, 1] with left-hand limits and
continuous from the right, equipped with the Skorohod topology).

2.1. MDP under projective conditions
What projective conditions can we expect ? Let us recall two results about the functional form of the CLT

for stationary sequences. With this aim, it is convenient to define a stationary sequence (Xi)i∈Z as follows. Let
θ : Ω 7→ Ω be a bijective bimeasurable transformation preserving P on (Ω,A). For any i ∈ Z, let Xi = X0 ◦ θi
where X0 is a real-valued random variable defined on (Ω,A). For a subfield F0 satisfying F0 ⊆ θ−1(F0), let
Fi = θ−i(F0). Denote also by I the θ-invariant sigma field.

Theorem 2.1. [Maxwell-Woodroofe [21]. Peligrad-Utev [27]]. Assume that X0 is F0-measurable, in L2 and
that ∑

n>0
n−3/2‖E(Sn|F0)‖2 <∞ .

Then {n−1/2Wn(t), t ∈ [0, 1]} converges in distribution in D[0, 1] to √ηW where W is a standard Brownian
motion independent of I and η is a I-measurable nonnegative r.v. such that E(η) = σ2 and

lim
n→∞

E(S2
n|I)
n

= η in L1 .

Theorem 2.2. [Heyde [20]. Dedecker-Merlevède-Volnỳ [7]]. Assume that X0 is F0-measurable, in L2 and such
that E(X0|F−∞) = 0 a.s. Assume that∑

n≥0
‖P0(Xn)‖2 <∞ where P0(Xn) = E(Xn|F0)− E(Xn|F−1) .
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Then {n−1/2Wn(t), t ∈ [0, 1]} converges in distribution in D[0, 1] to √ηW where W is a standard Brownian
motion independent of I and

η =
∑
k∈Z

E(X0Xk|I) .

Remark 2.3. The theorems have different ranges of applicability. Both of them are satisfied under∑
k>0

k−1/2‖E(Xk|F0)‖2 <∞. (2.1)

Let φ(k) =
∥∥ supt∈R

∣∣E(1Xk≤t|F0)− E(1Xk≤t)
∣∣∥∥
∞. If X0 ∈ Lp for p ≥ 2, then (2.1) holds under∑

k>0
k−1/2(φ(k))(p−1)/p <∞.

Proof. The proofs are based on approximation by a stationary martingale in L2. �

Starting from the so called coboundary decomposition (Xk = dk + Zk − Zk+1) and using the MDP for
martingale (see Puhalskii [29]), Gao [17] and Djellout [11] obtained the MDP for ϕ-mixing sequences with
summable mixing rate.

In the context of Markov process, starting from the Poisson equation, Delyon-Juditsky-Lipster [10] proved the
MDP for n−1/2∑n

k=1H(Yk) where H is a Lipshitz function and Yk = F (Yn−1, εn) where |F (x, z) − F (y, t)| ≤
κ|x− y|+ L|z − t| with κ < 1 and (εn) an iid sequence of r.v. independent of Y0 such that E(eδ|ε0|) <∞.

Usually, in dealing with dependent random variables, to brake the dependence, a standard procedure is to
divide first the variables in blocks. This technique introduces a new parameter. The second step is then to
approximate these blocks either by martingale differences, either by independent blocks using coupling results.

Proposition 2.4. [A modification of Puhalskii’s result [29]]. Let {d(m)
j,n }1≤j≤kn,m be a martingale difference

sequence adapted to F (m)
j,n . Define Z(m)

n (t) = n−1/2∑[kn,mt]
i=1 d

(m)
i,n . Let an be a sequence of positive numbers such

that an → 0 and nan →∞. Assume that for all m ≥ 1

sup
1≤j≤kn,m

‖d(m)
j,n ‖∞ = o(

√
nan) as n→∞

and that for all δ > 0, there exists σ2 ≥ 0 such that

lim
m→∞

lim sup
n→∞

anlogP

∣∣∣ 1
n

kn,m∑
j=1

E((d(m)
j,n )2|F (m)

(j−1),n)− σ2
∣∣∣ ≥ δ

 = −∞ .

Let {ζn(t) , t ∈ [0, 1]} be a D[0, 1]–valued process such that for all δ > 0,

lim
m→∞

lim sup
n→∞

anlogP
(
√
an sup

t∈[0,1]
|ζn(t)− Z(m)

n (t)| ≥ δ
)

= −∞ .

Then, the processes ζn(.) satisfy the MDP with rate function Iσ(·) given by

Iσ(h) = 1
2σ2

∫ 1

0
(h′(u))2du (2.2)

if simultaneously σ > 0, h(0) = 0 and h is absolutely continuous, and Iσ(h) =∞ otherwise.
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Theorem 2.5. [Dedecker-Merlevède-Peligrad-Utev [8]]. Assume that ‖X0‖∞ <∞ and that X0 is F0–measurable.
In addition, assume that

∞∑
n=1

n−3/2‖E(Sn|F0)‖∞ <∞ ,

and that there exists σ2 ≥ 0 with
lim
n→∞

‖n−1E(S2
n|F0)− σ2‖∞ = 0 .

Then, for all positive sequences an with an → 0 and nan →∞, the normalized partial sums processes n−1/2Wn(.)
satisfy the MDP with the good rate function Iσ(·) given in (2.2).

Remark 2.6. The conditions hold under
∞∑
n=1

n−1/2‖E(Xn|F0)‖∞ <∞

and
lim
n→∞

‖E(XiXj |F−n)− E(XiXj)‖∞ = 0 forall i, j ≥ 1.

In this case σ2 =
∑
k∈Z E(X0Xk).

Remark 2.7. Let

φ2(n) = sup
i>j≥n

∥∥ sup
(s,t)∈R2

∣∣E(1Xi≤s1Xj≤t|F0)− E(1Xi≤s1Xj≤t)
∣∣∥∥
∞.

The above conditions are satisfied if ∑
k>0

k−1/2φ2(k) <∞ .

This improves the condition imposed by Gao [17].

Proof. The proof of Theorem 2.5 is based on an approximation by a stationary martingale plus an Hoeffding-type
inequality.

Let m be an integer and k = kn,m = [n/m]. Let Xi,m =
∑im
j=(i−1)m+1Xj ,

M
(m)
k =

k∑
i=1

(Xi,m − E(Xi,m|F(i−1)m) :=
[n/m]∑
i=1

Di,m and M (m)
k (t) := M

(m)
[kt] .

We first notice that

lim sup
n→∞

∥∥∥ 1
n

[n/m]∑
j=1

(E(D2
j,m|F(j−1)m)− σ2

∥∥∥
∞
≤ ‖E(Sm|F0)‖2∞

m
+ ‖m−1E(S2

m|F0)− σ2‖∞

and

sup
t∈[0,1]

|S[nt] −M
(m)
k (t)| ≤ o(

√
nan) + max

1≤j≤[n/m]
|
j∑
i=1

E(Xi,m|F(i−1)m)| .

To handle the last term in the right-hand side of the above inequality, we apply the Hoeffding-type inequality
of Peligrad-Utev-Wu [28]. This gives

anlogP
(√

an
n

max
1≤j≤[n/m]

|
j∑
i=1

E(Xi,m|F(i−1)m)| ≥ δ
)
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≤ anlog(4
√
e)− δ2m

2(‖E(Sm|F0)‖∞ + 80
∑∞
j=1 j

−3/2‖E(Sjm|F0)‖∞)2 .

�

2.2. Applications.
2.2.1. Contracting MC

Let (Yn)n≥0 be a stationary Markov chain of bounded random variables with invariant measure µ and
transition kernel K. Denote by ‖ · ‖∞,µ the essential supremum norm with respect to µ. Let Λ1 be the set of
1-Lipschitz functions. Assume that

there exist C > 0 and ρ ∈]0, 1[ such that sup
g∈Λ1

‖Kn(g)− µ(g)‖∞,µ ≤ Cρn, (2.3)

for any f, g ∈ Λ1 and any m ≥ 0 lim
n→∞

‖Kn(fKm(g))− µ(fKm(g))‖∞,µ = 0. (2.4)

Let L be the class of functions f from R to R such that |f(x)− f(y)| ≤ c(|x− y|), for some concave and non
decreasing function c satisfying ∫ 1

0

c(t)
t
√
| log t|

dt <∞ .

Assume that the stationary Markov chain (Yn)n≥0 satisfies (2.3) and (2.4). If f belongs to L, then the MDP
holds for {n1/2∑[nt]

k=1(f(Yk)− µ(f)), t ∈ [0, 1]} with

σ2 = σ2(f) = µ((f − µ(f))2) + 2
∑
n>0

µ(Kn(f) · (f − µ(f))) .

2.2.2. Linear process
When we deal with functions of a linear process for instance, the next theorem can be more adapted.

Theorem 2.8. [Dedecker-Merlevède-Peligrad-Utev [8]]. Assume that ‖X0‖∞ < ∞, that X0 is F0–measurable
and that E(X0|F−∞) = 0 a.s. In addition, assume that∑

n≥0
‖P0(Xn)‖∞ <∞ ,

and that for all j ≥ 0,

lim
n→∞

‖n−1
n∑
i=1

E(XiXi+j |F0)− E(X0Xj)‖∞ = 0 .

Then, for all positive sequences an with an → 0 and nan →∞, the normalized partial sums processes n−1/2Wn(.)
satisfy the MDP with the good rate function Iσ(·) given in (2.2) where σ2 =

∑
k∈Z E(X0Xk).

Remark 2.9. This can be extended to linear processes Yk =
∑
j≥0 ajXk−j with (Xi) satisfying the conditions

of the above theorem and (ak) in `2. The rate function is then eventually inherited from a fractional Brownian
motion (see Merlevède-Peligrad [23]) and the normalizing sequence is

√
Var(

∑n
k=1 Yk).

2.2.3. Functions of Linear processes
Let (ci)i≥0 in `1, {εi}i∈Z a sequence of iid bounded r.v.’s and

Xk = f
(∑
i≥0

ciεk−i

)
− E

(
f
(∑
i≥0

ciεk−i

))
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Let δ(ε0) = 2 inf{‖ε0 − x‖∞, x ∈ R}, and

wf (h) = sup
|t|≤h,x∈R

|f(x+ t)− f(x)| .

• If
∑
n≥1

wf

(
δ(ε0)

∑
k≥n
|ck|
)

√
n

<∞ the conditions of Theorem 2.5 hold.
• If

∑
n≥0 wf

(
δ(ε0)|cn|

)
<∞, the conditions of Theorem 2.8 hold.

• Bernoulli Shifts: ci = 2−i−1 and ε0 is such that P (ε0 = 1) = P (ε0 = 0) = 1/2. Then the MDP holds as
soon as ∫ 1

0

wf (t)
t
√
| log t|

dt <∞ .

2.3. MDP for strong mixing sequences
The previous theorems do not allow to consider strong mixing sequences and unbounded random variables.

Let us consider α−mixing sequences; i.e.

α(n) = sup
p∈Z

α(Fp,Gn+p)→ 0 n→∞

where Fp = σ(Xj , j ≤ p), Gn+p = σ(Xj , j ≥ n+ p) and

α(A,B) = sup
A∈A,B∈B

|P(A ∩B)− P(A)P(B)|

Assume that for all n ≥ 1,

α(n) ≤ exp(−cnγ1) where γ1 > 0 and c > 0

and the following tail condition: there exist b ∈]0,∞[, γ2 ∈]0,+∞] such that

sup
i>0

P(|Xi| > t) ≤ exp(1− (t/b)γ2)for all t >0

In the next theorem, we present a Bernstein-type inequality

Theorem 2.10. [Merlevède-Peligrad-Rio [22]]. Assume that

γ < 1 where 1
γ

= 1
γ1

+ 1
γ2
.

Then there exists η > 0 such that for n ≥ 4 and λ ≥ C(logn)η

P( sup
k∈[1,n]

|Sk| ≥ λ) ≤ exp(−λ2/(C1 + C1nV )) + (n+ 1) exp(−λγ/C2),

where for ϕM (x) = (x ∧M) ∨ (−M),

V = sup
M≥1

sup
i>0

(
Var(ϕM (Xi)) + 2

∑
j>i

|Cov(ϕM (Xi), ϕM (Xj))|
)
.

Remark 2.11. Heuristically the inequality can be useful to study an logP
(√an√

n
Sn > t) provided annγ/(2−γ) →

∞.
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Theorem 2.12. [Merlevède,Peligrad-Rio [22]]. Assume that

α(n) ≤ exp(−cnγ1) and sup
i>0

P(|Xi| > t) ≤ exp(1− (t/b)γ2)

and γ < 1 where 1
γ = 1

γ1
+ 1

γ2
. Let σ2

n = VarSn and assume that

lim inf
n→∞

σ2
n

n
> 0.

Then, for all positive sequence an such that

an → 0 and annγ/(2−γ) →∞

{σ−1
n Sn} satisfies the MDP with I(t) = t2/2.

Remark 2.13. If (Xi) is a second order stationary sequence, under the mixing and tail conditions limn→∞
σ2
n

n =
σ2 > 0 as soon as σ2

n →∞.

Proof. We give some hints for the proof of Theorem 2.12. The Bernstein type inequality allows to considered
the r.v’s truncated at a level Tn. Let

I(n, j) = {(j − 1)(pn + qn) + 1, . . . , (j − 1)(pn + qn) + pn}

J(n, j) = {(j − 1)(pn + qn) + pn + 1, . . . , j(pn + qn)}
let S′(K) =

∑
i∈K X

′
i and mn = [n/(pn + qn)]

S′n =
mn∑
j=1

S′(I(n, j)) +
mn∑
j=1

S′(J(n, j)) +Rn

The idea is to consider discrete Cantor type sets. We construct a set

K
(`n)
I(n,j) =

2`n⋃
i=1

I`n,i(pn, j) ,

where the I`n,i(pn, j) are disjoint sets of consecutive integers, each of same cardinal such that

pn
2`n(1 + εn) ≤ CardI`n,i(pn, j) ≤

pn
2`n .

We have the following

mn∑
j=1

S′(I(n, j)) =
mn∑
j=1

S′
(
K

(`n)
I(n,j)

)
+

mn∑
j=1

S′
(
(K(`n)

I(n,j))
c
)

Using coupling arguments, we reduce the problem of studing the MDP for
∑mn
j=1 S

∗(K(`n)
I(n,j)

)
where

(
S∗(K(`n)

I(n,j))
)

1≤j≤mn
are independent with the same distribution as the random variables S′(K(`n)

I(n,j)).
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We need to show that

an

mn∑
j=1

logE exp
(
tS′
(
K

(`n)
I(n,j)

)
/
√
anσ2

n

)
→ t2

2 as n→∞ .

This can be done by decorrelation step by step on the Cantor set that implies

an

∣∣∣ mn∑
j=1

logE exp
(
tS′
(
K

(`n)
I(n,j)

)
/
√
anσ2

n

)

−
mn∑
j=1

2`n∑
i=1

logE exp
(
tS′
(
I`n,i(pn, j)

)
/
√
anσ2

n

)∣∣∣→ 0 as n→∞ .

�

Remark 2.14. On the mixing-coefficients. The α-mixing coefficients are not needed in their full generality. We
need mixing-coefficients allowing coupling and decorrelation of blocks of random variables. We can use of the
τ -mixing coefficients as introduced by Dedecker and Prieur [9]. These coefficients are easily computable in a lot
of situations as for instance iterated Lipschitz models or functions of linear processes generated by absolutely
regular innovations.

2.4. Applications
2.4.1. Application to Markov chains

Let (Yj)j≥0 be an E-valued, irreducible ergodic and stationary Markov chain with a transition probability P
having a unique invariant probability measure π. Assume that the chain has an atom: there exists A ∈ E with
π(A) > 0 and ν a probability measure such that P (x, .) = ν(.) for all x ∈ A. Assume that there exists δ > 0
and γ1 ∈]0, 1] such that for τ = inf{n ≥ 0;Yn ∈ A}:

Eν(exp(δτγ1)) <∞.

Djellout et Guillin (2001): for each bounded function f from E to R with π(f) = 0, the MDP holds for
n−1/2∑n

i=1 f(Yi) with an such that an → 0 and annγ1/(2−γ1) →∞.
Applying our MDP result we obtain: Suppose that π(f) = 0 and there exist b ∈]0,∞[ and γ2 ∈]0,∞] such

that
π(|f | > t) ≤ exp(1− (t/b)γ2) for any t > 0

If 1/γ1 + 1/γ2 > 1 then the MDP holds with speed an satisfying an → 0 and annγ/(2−γ) →∞.

2.4.2. Autoregressive Lipschitz model
For δ in [0, 1[ and C in ]0, 1], let L(C, δ) be the class of 1-Lipschitz functions f which satisfy

f(0) = 0 and |f ′(t)| ≤ 1− C(1 + |t|)−δ almost everywhere.

Let (εi)i∈Z be a sequence of i.i.d. real-valued random variables. For η ∈]0, 1], let ARL(C, δ, η) be the class
of Markov chains on R defined by

Yn = f(Yn−1) + εn with f ∈ L(C, δ) and E(exp(λ|ε0|η)) <∞ for a λ > 0.

Let g be a 1-Lipschitz function such that |g(x)| ≤ c(1 + |x|ζ) for ζ in [0, 1]. If δ + ζ > 0, then (g(Yi) −
E(g(Yi)) )i∈Z satisfies the MDP with

γ2 = η(1− δ)/ζ and γ1 = η(1− δ)(η(1− δ) + δ)−1
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3. Moderate deviations for the Durbin-Watson statistic related to the
first-order autoregressive process

The purpose of this section is to investigate MDP for the Durbin-Watson statistic associated with the stable
first-order autoregressive process where the driven noise is also given by a first-order autoregressive process.
We first establish a MDP for both the least squares estimator of the unknown parameter of the autoregressive
process as well as for the serial correlation estimator associated with the driven noise. It enables us to provide
a MDP for the Durbin-Watson statistic in the easy case where the driven noise is normally distributed and in
the more general case where the driven noise satisfies a less restrictive Chen-Ledoux type condition.
We start by introducing some notations and definitions, see [13]. Let (bn) be a sequence of increasing positive
numbers such that

bn −→∞,
bn√
n
−→ 0. (3.1)

Remark 3.1. The condition (3.1) corresponds to (1.1) with an = 1/b2n.

Definition 3.2. We say that Zn converges (b 2
n)−exponentially fast in probability to some random variable Z

if, for all δ > 0,
lim sup
n→∞

1
b 2
n

logP
(
‖Zn − Z‖ > δ

)
< 0, and we note Zn

exp−→
b2
n

Z.

Definition 3.3. We say that Zn converges (b 2
n)−superexponentially fast in probability to some random variable

Z if, for all δ > 0,

lim sup
n→∞

1
b 2
n

logP
(
‖Zn − Z‖ > δ

)
= −∞, and we note Zn

superexp−→
b2
n

Z.

Remark 3.4. We have the implications, as n goes to infinity,

Zn
superexp−→

b2
n

Z =⇒ Zn
exp−→
b2
n

Z =⇒ Zn
P−→ Z.

Definition 3.5. We say that Yn and Zn are (b 2
n)−exponentially equivalent if ‖Yn−Zn‖ is negligible with respect

to the large deviations, that is, for all δ > 0,

lim sup
n→∞

1
b 2
n

logP
(
‖Yn − Zn‖ > δ

)
= −∞, and we note Yn

superexp∼
b2
n

Zn.

Let us introduce the autoregressive process of order 1 with autocorrelated driven noise that we shall consider.
For all n ≥ 1, {

Xn = θXn−1 + εn

εn = ρεn−1 + Vn
(3.2)

where X0 and ε0 are square-integrable, (Vn) is i.i.d. with E[V 2
1 ] = σ2 and E[V 4

1 ] = τ4. The stability of the
process is insured by |θ| < 1 and |ρ| < 1. We introduce the least squares estimates

θ̂n =
∑n
k=1XkXk−1∑n
k=1X

2
k−1

, ρ̂n =
∑n
k=1 ε̂kε̂k−1∑n
k=1 ε̂

2
k−1

, D̂n =
∑n
k=1(ε̂k − ε̂k−1)2∑n

k=0 ε̂
2
k

,

where the least squares residuals are given at stage n, for all 1 ≤ k ≤ n, by

ε̂k = Xk − θ̂nXk−1.
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Our objectives is to establish an MDP for these estimates under the restrictive case where (Vn) is gaussian and
under the more general hypothesis that (Vn) satisfies a Chen-Ledoux type condition.
Before going further, let us recall here a useful theorem to establish MDP for gaussian martingales, used
intensively in the next section.

Theorem 3.6. [Worms [31], [32]]. Let (Yn) be an adapted sequence with values in Rp, and (Vn) a gaussian
noise with variance σ2 > 0. We suppose that (Yn) satisfies, for some invertible square matrix C of order p, the
exponential convergence, for any δ > 0,

lim
n→∞

1
b 2
n

logP
(∥∥∥∥∥ 1

n

n−1∑
k=0

YkY
′
k − C

∥∥∥∥∥ > δ

)
= −∞.

Then, the sequence (
Mn

bn
√
n

)
n≥1

satisfies an LDP on Rp of speed b 2
n and good rate function

I(x) = 1
2σ2x

′C−1x

where (Mn) is the martingale given by Mn =
n∑
k=1

Yk−1Vk.

We also introduce a similar result related to nongaussian martingales which will be useful in the last section.

Theorem 3.7. [Puhalskii [29]]. Let (mn
j )1≤j≤n be a triangular array of martingale differences with values in

Rd, with respect to the filtration (Fn)n≥1. Let (bn) be a sequence of real numbers satisfying (3.1). Suppose that
there exists a symmetric positive-semidefinite matrix Q such that

1
n

n∑
k=1

E
[
mn
k (mn

k )′
∣∣Fk−1

]
superexp−→

b2
n

Q.

Suppose that there exists a constant c > 0 such that, for each 1 ≤ k ≤ n,

|mn
k | ≤ c

√
n

bn
a.s.

Suppose also that, for all a > 0, we have the exponential Lindeberg’s condition

1
n

n∑
k=1

E
[
|mn

k |2I{|mn
k
|≥a

√
n
bn

}∣∣Fk−1

]
superexp−→

b2
n

0.

Then, the sequence (
1

bn
√
n

n∑
k=1

mn
k

)
n≥1

satisfies an LDP on Rd with speed b2n and good rate function

Λ∗(v) = sup
λ∈Rd

(
λ′v − 1

2λ
′Qλ

)
.
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In particular, if Q is invertible,
Λ∗(v) = 1

2v
′Q−1v.

3.1. Results on the Durbin-Watson testing procedure
In [3], the following almost sure convergences are established for our estimates,

lim
n→∞

θ̂n = θ∗ a.s. lim
n→∞

ρ̂n = ρ∗ a.s. lim
n→∞

D̂n = D∗ a.s.

where θ∗ = (1 + θρ)−1 (θ+ ρ), ρ∗ = θρ θ∗ and D∗ = 2(1− ρ∗). The objective of [3] was in particular to establish
a statistical procedure for testing H0 : “ρ = 0” against H1 : “ρ 6= 0” and we shall recall the associated result in
the sequel. To summarize, assume that θ 6= 0 and θ∗ 6= 0. Then, under the null H0,

n

4θ̂ 2
n

(
D̂n − 2

)2 L−→
n→∞

χ2
1.

In addition, under the alternative H1,

lim
n→∞

n

4θ̂ 2
n

(
D̂n − 2

)2
= +∞ a.s.

On Figure 1 below, the empirical frequencies with whichH0 is rejected for a large simulation study is represented
for different values of ρ, in comparison with other usual procedures for testing serial correlation (Durbin’s h-test
HT, Breusch-Godfrey BG, Ljung-Box LB and Box-Pierce BP). Figure 1 shows that the aforesaid procedure
outperforms all tests on small-size samples, and that it is equally powerful than the BG and HT procedures on
large samples.

Figure 1. Simulation study for n = 30 and n = 500 (p = 1, p = 3).
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3.2. Moderate deviations when (Vn) is gaussian
In this section, we need to introduce the following hypothesis.
(H1) The driven noise (Vn) is i.i.d. with a gaussian distribution, E[V1] = 0 and E[V 2

1 ] = σ2.
(H2) There exists t > 0 such that

E
[

exp(tε2
0)
]
<∞ and E

[
exp(tX2

0 )
]
<∞.

3.2.1. Moderate deviations for θ̂n
Theorem 3.8. [Bercu-Proïa [3]]. Assume that E[V 4

1 ] <∞. Then, we have the asymptotic normality
√
n
(
θ̂n − θ∗

)
L−→

n→∞
N (0, σ2

θ)

where
σ2
θ = (1− θ2)(1− θρ)(1− ρ2)

(1 + θρ)3 .

Theorem 3.9. [Bitseki Penda-Djellout-Proïa [5]]. Assume that the hypothesis (H1), (H2) are satisfied. Then,
the sequence (√

n

bn

(
θ̂n − θ∗

))
n≥1

satisfies an LDP on R with speed b 2
n and good rate function

Iθ(x) = x2

2σ2
θ

.

Proof. To get an outline of the proof, consider the decomposition
√
n

bn

(
θ̂n − θ∗

)
=
√
n

bn

(
σ2

1 + θρ

)
Mn

〈M〉n
+ n

Sn−1

(
1

1 + θρ

)
Rn
bn
√
n

where Mn =
∑n
k=1Xk−1Vk is a martingale, Sn =

∑n
k=0X

2
k and Rn is a residual. We prove that the first term

satisfies an LDP by Theorem 3.6, and that the second term is exponentially negligible. Then, we establish the
exponential equivalence √

n

bn

(
θ̂n − θ∗

)
superexp∼

b2
n

1
`(1 + θρ)

Mn

bn
√
n

where ` is the almost sure limit of Sn/n. We conclude by using the contraction principle. The whole proof may
be found in [5]. �

3.2.2. Moderate deviations for ρ̂n
Theorem 3.10. [Bercu-Proïa [3]]. Assume that E[V 4

1 ] <∞. Then, we have the joint asymptotic normality

√
n

(
θ̂n − θ∗
ρ̂n − ρ∗

)
L−→

n→∞
N (0,Γ)

where
Γ =

(
σ2
θ θρσ2

θ

θρσ2
θ σ2

ρ

)
and

σ2
ρ = (1− θρ)

(1 + θρ)3

(
(θ + ρ)2(1 + θρ)2 + (θρ)2(1− θ2)(1− ρ2)

)
.
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Theorem 3.11. [Bitseki Penda-Djellout-Proïa [5]]. Assume that the hypothesis (H1), (H2) are satisfied. Then,
as soon as θ 6= −ρ, the sequence (√

n

bn

(
θ̂n − θ∗
ρ̂n − ρ∗

))
n≥1

satisfies an LDP on R2 with speed b 2
n and good rate function

K(x) = 1
2x
′Γ−1x.

Proof. To get an outline of the proof, consider the decomposition
√
n

bn

(
θ̂n − θ∗
ρ̂n − ρ∗

)
= 1
bn
√
n
AnZn +

√
n

bn

(
1

1 + θρ

)(
R1,n
R2,n

)
where

An =
(
A

(1,1)
n 0

A
(2,1)
n A

(2,2)
n

)
, Zn =

(
Mn

Nn

)
,

and where Mn =
∑n
k=1Xk−1Vk and Nn =

∑n
k=2Xk−2Vk are martingales, An is a square matrix, explicitly

given, converging almost surely and exponentially to A, and R1,n and R2,n are residuals. We prove that the
first term satisfies an LDP by Theorem 3.6, and that the second term is exponentially negligible. Then, we
establish the exponential equivalence

√
n

bn

(
θ̂n − θ∗
ρ̂n − ρ∗

)
superexp∼

b2
n

1
bn
√
n
AZn.

We conclude by using the contraction principle. The whole proof may be found in [5]. �

3.2.3. Moderate deviations for D̂n

Theorem 3.12. [Bercu-Proïa [3]]. Assume that E[V 4
1 ] <∞. Then, we have the asymptotic normality

√
n
(
D̂n −D∗

)
L−→

n→∞
N (0, σ2

D)

where σ2
D = 4σ2

ρ.

Theorem 3.13. [Bitseki Penda-Djellout-Proïa [5]]. Assume that the hypothesis (H1), (H2) are satisfied. Then,
the sequence (√

n

bn

(
D̂n −D∗

))
n≥1

satisfies an LDP on R with speed b 2
n and good rate function

ID(x) = x2

2σ2
D

.

Proof. The result immediately follows from the exponential equivalence
√
n

bn

(
D̂n −D∗

)
superexp∼

b2
n

−2
√
n

bn

(
ρ̂n − ρ∗

)
.

The whole proof may be found in [5]. �
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3.3. Moderate deviations when (Vn) satisfies a Chen-Ledoux type condition
In this section, we need to introduce the following hypothesis.
(H3) The Chen-Ledoux type condition. For a > 0,

lim sup
n→∞

1
b 2
n

logn P
(
|V1|a > bn

√
n
)

= −∞.

(H4) The initial values satisfy

|ε0|a

bn
√
n

superexp−→
b2
n

0 and |X0|a

bn
√
n

superexp−→
b2
n

0.

Depending on the result we are currently proving, we need to assume that a = 2 or a = 4.

Remark 3.14. For bn = nα and 0 < α < 1/2, the Chen-Ledoux condition for a = 2 is satisfied if there exists
t > 0 and 0 < β < 1 such that

E
[
exp(tV 2β

1 )
]
<∞.

The condition is also satisfied for bn = nα if

|V1|a

bn
√
n

superexp−→
b2
n

0.

Theorem 3.15. [Bitseki Penda-Djellout-Proïa [5]]. Assume that the hypothesis (H3), (H4) are satisfied. Then,
the MDP established in Theorems 3.9, 3.11 and 3.13 still hold.

Proof. We need to use Theorem 3.7 of Puhalskii [29] for nongaussian martingales to establish a related MDP,
together with a result of Eichelsbacher and Löwe [16] related to i.i.d. random variables for which we have no
information on the log-Laplace transform, that we state below.

Theorem 3.16. [Eichelsbacher-Löwe [16]]. The following results are equivalent.
(1) The i.i.d. real-valued random variables (Yk) satisfy E[Y1] <∞ and

lim sup
n→∞

1
b 2
n

logn P
(
|Y1| > bn

√
n
)

= −∞.

(2) The sequence
1

bn
√
n

n∑
k=1

(
Yk − E[Yk]

)
satisfies an LDP with speed b 2

n and good rate function I(x) > 0 for all x 6= 0, and

lim
x→−∞

I(x) = lim
x→+∞

I(x) = +∞.

Let us just give a sketch of the strategy used to prove our result. We first establish an MDP for our estimates
without any gaussianity assumption on the driven noise. To summarize, it is possible to truncate all sequences
beyond an unbounded limit, that is, for r,R > 0,

X
(r)
k = Xk I{|Xk|≤ r √nbn }, V

(R)
k = VkI{|Vk|≤R} − E

[
VkI{|Vk|≤R}

]
, M (r,R)

n =
n∑
k=1

X
(r)
k−1V

(R)
k .
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Then, by Theorem 3.7 applied to the nongaussian martingale (M (r,R)
n ), we establish an MDP on the truncated

decomposition. The rate function is given by

IR(x) = x2

2`E
[
(V (R)

1 )
2] .

Finally, we show that the remaining part of the sequences are exponentially negligible. For all r > 0 and δ > 0,

lim sup
R→∞

lim sup
n→∞

1
b 2
n

logP
(

1
bn
√
n

∣∣∣Mn −M (r,R)
n

∣∣∣ > δ

)
= −∞.

The whole and technical proof may be found in [5]. �

4. Moderate deviation principle for Bifurcating Markov Chains.
The objective of this section is to give deviation inequalities and MDP for Bifurcating Markov Chains (BMC,

in short). The results will be obtained under hypothesis of geometric ergodicity or uniform geometric ergodicity
of an embedded Markov chain. As statistical applications, we provide deviation inequalities (for either the
gaussian setting or the bounded setting), for least square estimators of the parameters of a first order bifurcating
autoregressive process.

4.1. BMC’s model
Bifurcating Markov chains (BMC) are an adaptation of Markov chains to the data of a regular binary tree.

They are appropriate for example in the modeling of cell lineage data when each cell in one generation gives
birth to two offspring in the next one. Recently, they have received a great deal of attention because of the
experiments of biologists on aging of Escherichia Coli (E. Coli in short). E. Coli is a rod-shaped bacterium
which reproduces by dividing in the middle, thus producing two cells, one which already existed and that we
call old pole progeny cell, and the other which is new and that we call new pole progeny cell. One question
of interest is to know if the new pole progeny cells grow at the same rate that the old pole progeny cells. The
answer to this question was one of the main motivation of the introduction of BMC by Guyon [19]. Let us now
formally introduce the BMC.

Let T be a binary regular tree, see Fig 2. We shall see T as a given population. Each individual (vertex)
n ∈ T is seen as a positive integer n ∈ N∗. For r ∈ N, We denote by

Gr =
{

2r, 2r + 1, · · · , 2r+1 − 1
}

(resp. Tr =
{

1, 2, · · · , 2r+1 − 1
}
)

the r-th generation (resp. the first r+ 1 generations of the population). Then, the cardinality |Gr| of Gr (resp.
|Tr| of Tr) is

|Gr| = 2r (resp. |Tr| = 2r+1 − 1).
The generation of a given individual n is Grn with rn = blog2 nc, where bxc denotes the integer part of the real
number x.

Let (S,S) be a metric space endowed with its Borel σ-field. We call T-transition probability any mapping
P : S × S2 → [0, 1] such that

• P (., A) is measurable for all A ∈ S2,
• P (x, .) is a probability measure on (S2,S2) for all x ∈ S.
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1

2

4

5

n

2n

2n+1

3

6

7

G0 G1 G2 Grn

Figure 2. The binary tree T

For a T-transition probability P on S × S2, we denote by P0, P1 and Q respectively the first and the second
marginal of P , and the mean of P0 and P1, that is P0(x,B) = P (x,B×S), P1(x,B) = P (x, S×B) for all x ∈ S
and B ∈ S and Q = P0 + P1

2 .
For p ≥ 1, we denote by B(Sp) (resp. Bb(Sp)), the set of all Sp-measurable (resp. Sp-measurable and

bounded) mappings f : Sp → R. For f ∈ B(S3), when it is defined, we denote by Pf ∈ B(S) the function

x 7→ Pf(x) =
∫
S2
f(x, y, z)P (x, dydz).

Then, let (Xn, n ∈ T) be a family of S-valued random variables defined on a filtered probability space
(Ω,F , (Fr, r ∈ N),P). Let ν be a probability on (S,S) and P be a T-transition probability.

Definition 4.1. We say that (Xn, n ∈ T) is a (Fr)-bifurcating Markov chain with initial distribution ν and
T-transition probability P if

(a) Xn is Frn-measurable for all n ∈ T,
(b) L(X1) = ν,
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(c) for all r ∈ N and for all family (fn, n ∈ Gr) ⊆ Bb(S3)

E

[ ∏
n∈Gr

fn(Xn, X2n, X2n+1)
∣∣∣Fr] =

∏
n∈Gr

Pfn(Xn).

Remark 4.2. A typical example of bifurcating Markov chain is given by the (stable) first order bifurcating
autoregressive process (BAR(1), in short) defined as follows:

L(X1) = ν, and ∀n ≥ 1,

 X2n = α0Xn + β0 + ε2n

X2n+1 = α1Xn + β1 + ε2n+1,

where ν is a distribution probability on R, α0, α1 ∈ (−1, 1); β0, β1 ∈ R and
(
(ε2n, ε2n+1), n ≥ 1

)
forms a

sequence of centered i.i.d bivariate random variables with covariance matrix

Γ = σ2
(

1 ρ
ρ 1

)
, σ2 > 0, ρ ∈ (−1, 1).

One can think of a cell of E.Coli “n”, that reproduces by dividing into two, thus producing two individuals:
one, denoted by 2n+ 1, the old pole progeny cell, and the other, denoted by 2n, the new pole progeny cell. For
a cell “n”, Xn denote some quantitative value (growth rate, weight...). An issue in this model is for example
whether the values associated to new pole progeny and that associated to old pole progeny evolve in the same
way. For this purpose, it is advisable to estimate the parameters θ = (α0, β0, α1, β1), σ2 and ρ and to test null
hypothesis H0 = {(α0, β0) = (α1, β1)} against its alternative H1 = {(α0, β0) 6= (α1, β1)}.

In order, for example, to study the statistics arising for BAR(1) process, we need to define some empirical
means related to BMC (Xn, n ∈ T). For all f ∈ B(S) (resp. B(S3)) we set

MTr (f) =
∑
i∈Tr

f(∆̃i),

with {
f(∆̃i) = f(Xi) if f ∈ B(S)
f(∆̃i) = f(∆i) if f ∈ B(S3) where ∆i = (Xi, X2i, X2i+1),

and
MTr (f) = |Tr|−1MTr (f).

Under suitable regularity assumptions, Guyon, J. [19] proved laws of large numbers and central limit theorem
for empirical averages MTr (f). Our objectives in this section are:

• on the one hand, to specify the order of magnitude in this law of large numbers by given deviation
inequalities for MTr (f), that is non asymptotic estimation of the form

P
(∣∣MTr (f)− s

∣∣ > δ
)
≤ h(δ, r, c),

where h, c and s will be specify later;
• on the other hand to give moderate deviation principle for

MTr (f − Pf)
b|Tr|

(for f ∈ B(S3)),

where the sequence (bn) will be specify later.



232 ESAIM: PROCEEDINGS

We will work with the subspace F of B(S) which verifies
(i) F contains the constants,
(ii) F 2 ⊂ F ,
(iii) F ⊗ F ⊂ L1(P (x, .)) for all x ∈ S, and P (F ⊗ F ) ⊂ F ,
(iv) there exists a probability µ on (S,S) such that F ⊂ L1(µ) and lim

r→∞
Qrf(x) = (µ, f) for all x ∈ S and

f ∈ F ,
(v) for all f ∈ F , there exists g ∈ F such that for all r ∈ N, |Qrf | ≤ g,
(vi) F ⊂ L1(ν)
We introduce the following hypothesis (where µ is the probability measure given in above hypothesis (iv)):
(A1) Geometric ergodicity of Q: ∀f ∈ F such that (µ, f) = 0, ∃g ∈ F such that

∀r ∈ N and ∀x ∈ S, |Qrf(x)| ≤ αrg(x) for some α ∈ (0, 1).

(A2) Uniform geometric ergodicity of Q: ∀f ∈ Bb(S) such that (µ, f) = 0, ∃c > 0 such that

|Qrf(x)| ≤ cαr for some α ∈ (0, 1) and for all x ∈ S,

4.2. Main results
Theorem 4.3. [Bitseki Penda-Djellout-Guillin [4]]. Let f ∈ F such that (µ, f) = 0. We assume hypothesis
(A1). Then for all r ∈ N

P
(
|MTr (f)| > δ

)
≤



c′

δ4

( 1
4
)r+1 if α2 < 1

2

c′

δ4 r
2 ( 1

4
)r+1 if α2 = 1

2

c′

δ4α
4r+4 if α2 > 1

2

(4.1)

where the positive constant c′ depends on α and f .

When f depends on the mother-daughters triangle (∆i), we have the following.

Theorem 4.4. [Bitseki Penda-Djellout-Guillin [4]]. We assume that (A1) is fulfilled. Let f ∈ B
(
S3) such that

Pf and Pf2 exists and belong to F and (µ, Pf) = 0. Then for all δ > 0 and all r ∈ N

P
(∣∣MTr (f)

∣∣ > δ
)
≤



c′

δ2

( 1
2
)r+1 if α2 < 1

2 ;

c′

δ2 r
( 1

2
)r+1 if α2 = 1

2 ;

c′

δ2α
2(r+1) if α2 > 1

2 ,

where the positive constant c′ depends on f and α. Furthermore, if Pf = 0, we have

P
(∣∣MTr (f)

∣∣ > δ
)
≤ c′

δ4

(
1
4

)r+1
.

Ideas for the proofs. The proof of Theorems 4.3 and 4.4 is based on two points: Markov inequality and control
of fourth order moment (Theorems 4.3) and second order moment (Theorems 4.4) of MTr (f). These controls
are done using explicit calculations (via successive conditioning) of fourth and second order moments ofMGr (f)
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(where MGr (f) = 1
|Gr|

∑
i∈Gr f(Xi)), hypothesis (A1) and hypothesis (i)-(vi) on F , and the relation MTr (f) =∑r

q=0
|Gq|
|Tr|MGq (f). �

Remark 4.5. Notice that the dichotomy around the value α2 = 1
2 naturally appears in the calculus.

Let (Hn)n≥1 be the filtration defined by

H0 = σ(X1) andHn = σ
(
∆Π(i),Π(i+ 1), 1 ≤ i ≤ n

)
where ∆Π(i) = (XΠ(i), X2Π(i), X2Π(i)+1) and Π is an application which allows to create a random order on the
population T which preserves the genealogical order (we refer to [19], [4] for more details on this application).
Then, we have the following result on MDP.

Theorem 4.6. [Bitseki Penda-Djellout-Guillin [4]]. Let (bn) be a sequence of increasing positive real numbers
satisfying

bn√
n
−→ +∞, bn√

n logn
−→ 0.

Let f ∈ B
(
S3) such that Pf = 0, Pf2 and Pf4 exist and belong to F . Assume also that

lim sup
n→∞

n

b2n
log
(
n ess sup

1≤k≤c−1(bn+1)
P
(∣∣f (∆Π(k)

) ∣∣ > bn
∣∣Hk−1

))
= −∞

where c−1(bn+1) := inf
{
k ∈ N : k

bk
≥ bn+1

}
. Then for all δ > 0, we have

lim
r→∞

|Tr|
b2|Tr|

logP
(

1
b|Tr|
|M|Tr|(f)| > δ

)
= −I(δ).

where I(x) = x2

2(µ, Pf2) .

Ideas for the proof. The proof of theorem 4.6 is based on deviation inequalities (4.1) and the moderate deviation
principle for the martingale. �

Now, under the stronger assumption (A2), we have the following more sharp estimations.

Theorem 4.7. [Bitseki Penda-Djellout-Guillin [4]]. Let f ∈ Bb(S) such that (µ, f) = 0. Then for all δ > 0 we
have

P
(
MTr (f) > δ

)
≤



exp (c′′δ) exp
(
−c′δ2|Tr|

)
, ∀r ∈ N, if α < 1

2 ,

exp (2c′δ(r + 1)) exp
(
−c′δ2|Tr|

)
, ∀r ∈ N, if α = 1

2 ,

exp
(
−c′δ2|Tr|

)
,∀r > r0 − 1, if 1

2 < α <
√

2
2 ,

exp
(
−c′δ2 |Tr|

r+1

)
,∀r > r0 − 1, if α =

√
2

2 ,

exp
(
−c′δ2 1

α2(r+1)

)
,∀r > r0 − 3, if α >

√
2

2 ,

(4.2)

where r0 := log (δ/c0) / log(α), and c0, c′ and c′′ are positive constants which depend on α, ‖f‖∞ and c.
If f ∈ Bb

(
S3) such that (µ, Pf) = 0 then we have the same conclusions for MTr (f).
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Ideas for the proof. The proof is based on Chernoff inequality, successive conditioning and successive applica-
tions of Azuma-Bennet-Hoeffding using (A2). �

Remark 4.8. Once again, notice that the dichotomy around α = 1
2 and α2 = 1

2 in (4.2) naturally appears from
the calculations.
Theorem 4.9. [Bitseki Penda-Djellout-Guillin [4]]. Let (bn) be an increasing sequence of positive real numbers
such that

(v1) bn√
n
−→ +∞,

(v2) if α2 < 1
2 , the sequence (bn) is such that bn

n
−→ 0,

(v3) if α2 = 1
2 , the sequence (bn) is such that bn logn

n
−→ 0,

(v4) if α2 > 1
2 , the sequence (bn) is such that bnα

rn+1
√
n

−→ 0.

Let f ∈ Bb(S3) such that Pf = 0. Then
(

1
b|Tr|

MTr (f)
)
satisfies a MDP in R with the speed b2

|Tr|
|Tr| and rate

function I(x) = x2

2(µ,Pf2) .

Remark 4.10. The conditions (v2)-(v4) come from deviation inequalities (4.2).
Ideas for the proof. The proof is based on deviation inequalities (4.2) and moderate deviation principle for
bounded martingale. �

4.3. Application
We consider the first order bifurcating autoregressive process (BAR(1)).

L(X1) = ν, and∀n ≥ 1,

 X2n = α0Xn + β0 + ε2n

X2n+1 = α1Xn + β1 + ε2n+1,
(4.3)

where α0, α1 ∈ (−1, 1); β0, β1 ∈ R,
(

(ε2n, ε2n+1), n ≥ 1
)
forms a sequence of i.i.d. bivariate random variables

and ν a probability measure on R. This model is a typical example of bifurcating markovian dynamics and
it has been the motivation for the rigorous mathematical study of BMC in [19]. We assume that ν has finite
moments of all orders. The least square estimator θ̂r of θ = (α0, β0, α1, β1) is given by, for η ∈ {0, 1}

α̂rη =
|Tr|−1

∑
i∈Tr

XiX2i+η−

(
|Tr|−1

∑
i∈Tr

Xi

)(
|Tr|−1

∑
i∈Tr

X2i+η

)
|Tr|−1

∑
i∈Tr

X2
i
−

(
|Tr|−1

∑
i∈Tr

Xi

)2

β̂rη = |Tr|−1 ∑
i∈Tr

X2i+η − α̂rη|Tr|−1 ∑
i∈Tr

Xi.

The BAR(1) processes are an adaptation of autoregressive processes, when the data have a binary tree
structure. They were first introduced by Cowan and Staudte [18] for cell lineage data where each individual in
one generation gives rise to two offspring in the next generation.

In [19], Guyon, after establishing the first results on the theory of BMC, proves laws of large numbers
and central limit theorem for the least-square estimators θ̂r = (α̂r0, β̂r0 , α̂r1, β̂r1) of the 4-dimensional parameter
θ = (α0, β0, α1, β1).

He also gives some statistical tests which allow to check if the model is symmetric or not (roughly α0 = α1 or
not), and if the new pole and the old pole populations are even distinct in mean, which allows him to conclude
a statistical evidence in aging in E. Coli.
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4.3.1. The gaussian setting

First we consider that
(

(ε2n, ε2n+1), n ≥ 1
)
forms a sequence of i.i.d bivariate random variables with law

N2(0,Γ) with

Γ = σ2
(

1 ρ
ρ 1

)
, σ2 > 0, ρ ∈ (−1, 1);

We take F = C1
pol(R) where C1

pol(R) = {f : R→ R/∃c > 0,∃m ∈ N, |f(x)|+ |f ′(x)| ≤ c(1 + |x|m)} . Then F
satisfies hypothesis (i)-(vi). (A1) are automatically satisfied with α = max(|α0|, |α1|).

Let us define two continuous functions µ1 : Θ→ R and µ2 : Θ×R∗+ → R by writing (µ,x) = µ1(θ) and (µ,x2) =
µ2(θ, σ2), where θ = (α0, β0, α1, β1) ∈ Θ = (−1, 1)×R× (−1, 1)×R, and µ is the stationary distribution of Q.
Then, we have the following deviation inequalities.

Proposition 4.11. [Bitseki Penda-Djellout-Guillin [4]]. For all δ > 0, for all r ∈ N and for all γ <

min
(
c1b
1+δ ,

c1b

1+
√
δ
, c1b

1+ 4√
δ

)
, where c1 = c1(µ1) > 0, we have

P
(∥∥∥θ̂r − θ∥∥∥ > δ

)
≤



c
γ4qδ4−p

( 1
4
)r+1 if α2 < 1

2 ,

c
γ4qδ4−p r

2 ( 1
4
)r+1 if α2 = 1

2 ,

c
γ4qδ4−pα

4(r+1) if α2 > 1
2 ,

where c = c(α, µ1, µ2) > 0, p = p(δ) ∈ {0, 2, 4} and q = q(δ) ∈ {0, 1}.

4.3.2. Bounded setting
Now assume that the noise values in a compact set. We set F = C1

b (R). Then (A2)are automatically satisfied
with α = max(|α0|, |α1|). For all δ > 0 and for all

γ < min
(

c1b

1 + δ
,

c1b

1 +
√
δ
,

c1b

1 + 4
√
δ

)
where c1 is a positive constant which depends on µ1, let

r0 :=
log
(
γqδ1−p/2/c0

)
logα ,

where c0 = c0(α, c, γ), p ∈ {0, 1, 3/2} and q ∈ {0, 1}. Then we have the following deviation inequalities.

Proposition 4.12. [Bitseki Penda-Djellout-Guillin [4]]. We have

P
(∥∥∥θ̂r − θ∥∥∥ > δ

)
≤



c2 exp
(
c′′γqδ1−p/2) exp

(
−c′γ2qδ2−p|Tr|

)
,∀r ∈ N, if α < 1

2

c2 exp
(
c′γqδ1−p/2(r + 1)− c′γ2qδ2−p|Tr|

)
,∀r ∈ N, if α = 1

2

c2 exp
(
−c′γ2qδ2−p|Tr|

)
, ∀r > r0, if 1

2 < α <
√

2
2

c2 exp
(
−c′γqδ2−p |Tr|

r+1

)
, ∀r > r0, if α =

√
2

2

c2 exp
(
−c′γ2qδ2−p 1

α2(r+1)

)
, ∀r > r0, if α >

√
2

2 ,
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where c2 is a positive constant, c′ and c′′ depend on α, and c.

5. Large deviations of the “true” self-repelling motion
In this section, we explain some features related to large deviations of a self-interacting one-dimensional

process called the “true” self-repelling motion (TSRM), defined by Bálint Tóth and Wendelin Werner in [30]
which were established in [14]. Let us first very briefly recall the intuitive definition of this process and describe
the motivations that lead to our study. The TSRM is a continuous real-valued process (Xt, t ≥ 0) that is locally
self-interacting with its past occupation-time. More precisely, for each positive time t, define its occupation-time
measure µt that assigns to each interval I ∈ R, the time spent in it by X before time t:

µt(I) =
∫ t

0
1{Xs∈I}ds

It turns out that for this particular process X, almost surely for each t, the measure µt has a continuous
density x 7→ Lt(x) with respect to the Lebesgue measure we will call local time by analogy with semi-martingales.
Heuristically, the dynamics of Xt is such that the TSRM is locally pushed in the direction of the negative
“gradient” of its local time at its current position. Loosely formulated, one can write dXt = −∇xLt(Xt)dt
(even if (Xt, t ≥ 0) is a random process). For more details and comments on this description, we refer to [30].

When a process admits a local time, we may assign a height to the process which simply represents the time
spent on the current position. For our process, we will denote by Ht this height i.e. Ht := Lt(Xt). Notice that
in this way, one obtains a space-filling 1+1-dimensional curve (Xt, Ht).

It turns out that this process is of a very different type than diffusions. For example (see again [30]), its
quadratic variation almost surely vanishes whereas its variation of power 3/2 is positive and finite. Similarly,
it does not have the Brownian scaling property, it has instead a 2/3 scaling behavior i.e., for any positive λ,
(Xλt, t ≥ 0) has the same law as (λ2/3Xt, t ≥ 0).

The construction of the process Xt is based on a family of coalescing one-dimensional Brownian motions
starting from all points in the plane. Such families had been constructed by Arratia and are now called
“Brownian web”. As a consequence, the estimates on the TSRM follow from results concerning this Brownian
web.

The TSRM seems at present to be one of the few such “non-diffusive” continuous processes that probabilists
can define. This gives us some motivation to study in more detail its behavior. There exists two main versions
of the TSRM, a stationary one and a zero-initial conditions one (see [14]). For the sake of simplicity, we only
state here the results of [14] about the stationary TSRM.

First, let us write both for the process (Xt, t ≥ 0) itself as for the height process (Ht, t ≥ 0) upper and lower
bounds for the probability that their value at a given time is very large. More precisely, we have:

Proposition 5.1 (Dumaz). When x→∞,

P(X1 ≥ x) ≤ exp
(
−4|a′1|3

27 x3 +O(ln(x))
)

where a′1 is the first negative root of the derivative of the Airy function.

Moreover, there exist c1, c′1, c2 and c′2 such that for all h > 0,

exp(−c1h3/2) ≤ P(H1 > h) ≤ exp(−c′1h3/2)

exp(−c2h3/2) ≤ P(H1 < −h) ≤ exp(−c′2h3/2).
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This enables us to derive almost sure fluctuation results (of the type of the law of the iterated logarithm) for
these two processes. Note that we need a 0− 1-law arguments to derive the result about the height process.

Proposition 5.2 (Dumaz). Almost surely, we have:

lim sup
t→0

t−2/3(ln(ln(1/t)))−1/3Xt = 3/(22/3|a′1|)

lim sup
t→+∞

t−2/3(ln(ln(t)))−1/3Xt = 3/(22/3|a′1|).

And there exist two positive constants m and m′ such that almost surely,

lim sup
t→0

t−1/3(ln(ln(1/t)))−2/3Ht = m

lim sup
t→+∞

t−1/3(ln(ln(t)))−2/3Ht = m′.

Let us point out that the process X does not have independent increments, so that the standard proof of the
LIL for Brownian motion can not be adapted directly for the lower bound.
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