
ESAIM: PROCEEDINGS, January 2014, Vol. 44, p. 291-299
SMAI Groupe MAS – Journées MAS 2012 – Session thématique

AN OVERVIEW ON APPROXIMATE BAYESIAN COMPUTATION ∗

Meïli Baragatti1 and Pierre Pudlo2

Abstract. Approximate Bayesian computation techniques, also called likelihood-free methods, are
one of the most satisfactory approach to intractable likelihood problems. This overview presents recent
results since its introduction about ten years ago in population genetics.

Résumé. Les méthodes bayésiennes approchées constituent l’un des outils majeurs d’inférence statis-
tique en dimension finie lorsque la vraisemblance du modèle paramétrique considéré n’est pas accessible.
Nous présentons quelques résultats récents qui ont permis d’augmenter significativement l’efficacité de
ces techniques depuis leurs introductions dans le domaine de la génétique des populations il y a main-
tenant plus d’une dizaine année.

1. Introduction
When conducting a parametric Bayesian analysis, Monte Carlo methods aims at approximating the posterior

via the empirical distribution of a simulated sample on the parameter space, Θ say. More precisely, in the
regular case, the posterior has density

π(θ |xobs) ∝ π(θ)f(xobs | θ), (1)

where π(θ) is the prior density on Θ and f(x | θ) the density of a stochastic model. Most of the Monte Carlo
algorithms require numerical evaluations of the likelihood f(xobs | θ) at many values of θ. But the likelihood
may be intractable when the stochastic model is based on a latent process u ∈ U , i.e.,

f(x | θ) =
∫

U

f(x, u | θ)du,

or when the likelihood is known up to a normalising constant depending on θ, i.e.,

f(x | θ) = g(x, θ)
Zθ

, where Zθ =
∫
g(x, θ)dx.

And some models such as hidden Markov random fields suffer from both difficulties, see, e.g., Everitt (2012).
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Since their introduction by Tavaré et al. (1997), approximate Bayesian computation (ABC) methods have
been widely used with intractable likelihoods. The basic ABC samplers are presented in Section 2, for parameter
estimation in Paragraph 2.1 and for model choice in Paragraph 2.4. Actually, ABC is based on a hierarchy of
approximations of the posterior discussed in Paragraphs 2.2 and 2.3. Calibration of ABC schemes are discussed
in Section 3. And other samplers focused on speeding up the computation are given in Section 4.

2. Basic samplers and their targets
The basic idea underlying ABC is as follow. Using simulations from the stochastic model, we can produce a

simulated sample from the joint distribution
π(θ)f(x | θ). (2)

The posterior distribution is then the conditional distribution of (2) knowing that the data x is equal to the
observation xobs. From the joint, simulated sample, ABC derives approximations of the conditional density
π(θ |xobs) and of other functional of the posterior such as moments or quantiles.

2.1. Acceptation-rejection sampler
The previous elegant idea suffers from two shortcomings. First, the algorithm might be time consuming

if simulating from the stochastic model is not straightforward. We postponed presentation of other ABC
algorithms that speed up the computation in Section 4. But the most profound problem is that estimating the
conditional distribution of θ knowing x = xobs requires that some simulations fall into the neighbourhood of
xobs. If the data space X is not of very small dimension, we face the curse of dimensionality, namely that it is
almost impossible to simulate a data set near the observed one. To solve the problem, ABC schemes perform a
(non linear) projection of the (observed and simulated) data sets on a space of reasonable dimension d via some
summary statistics η : X → Rd and set a metric δ[s, s′] on Rd.

Algorithm 1 ABC acceptation-rejection algorithm with a given threshold ε
1: for i = 1→ Nprior do
2: draw θi from the prior π(θ)
3: draw x from the likelihood f(x | θi)
4: compute si = η(x)
5: store the particle (θi, si)
6: end for
7: for i = 1→ Nprior do
8: compute the distance δ[si, sobs]
9: reject the particle if δ(si, sobs) > ε
10: end for

Note that the first loop between lines 1– 6 does not depend on the data set xobs. Therefore, the simulated
particles might be reused to analyze other data sets. In the second loop (lines 7– 10), the particles might be
weighted by wi = Kε(δ[si, sobs]), where Kε is some smoothing kernel with bandwidth ε. Then, the acceptation-
rejection algorithm corresponds to Kε(δ) = 1{δ ≤ ε}.

2.2. Target of the algorithm and approximations
The holy grail of the ABC scheme is the posterior distribution (1). To bypass the curse of dimensionality,

ABC introduces the non linear projection η : X → Rd. Hence, we cannot recover anything better than the
conditional distribution of θ knowing that the simulated summary statistics η(x) is equal to sobs = η(xobs), i.e.,

π
(
θ
∣∣ η(x) = sobs

)
. (3)



ESAIM: PROCEEDINGS 293

Moreover, the event η(x) = sobs might have very low probability, if not null. Hence, the output of the ABC
algorithm is a sample from the distribution conditioned by the larger event Aε =

{
δ[η(x), sobs] ≤ ε

}
, namely

π
(
θ
∣∣ δ[η(x), sobs] ≤ ε

)
. (4)

The distribution (4) tends to (3) when ε→ 0. But, if the user want to keep the size of the output constant,
decreasing the threshold ε might be problematic in terms of processing time: indeed, the algorithm requires
an average number of simulations Nprior = N/π

(
Aε
)
and π

(
Aε
)
can decrease very fast toward 0 when ε → 0.

Actually, the error we commit be estimating the density of the output of the algorithm rather than computing
explicitly (3) has been widely studied in nonparametric statistics since the seminal paper of Rosenblatt (1969).

2.3. Post-processing the output of the sampler
In order to provide a better approximate of (3) with the ABC sample, Beaumont et al. (2002) proposed a post-

process substituting the output (θi, si), i = 1, . . . , N , of the algorithm with the sample θ?i = θi − β̂(si − sobs),
i = 1, . . . , N , where β̂ is computed via a local linear regression of θ given s. The rationale behind that
computation is as follow. Conditionally on Aε, if the distribution of (θ, η(x)) were driven by the linear model

θ = βη(x) + u,

with u independent of η(x) and E(u) = 0, then βsobs + u were distributed as θ in (3). Hence, apart from the
fact that β is replaced with its estimate, the θ?i were distributed according to (3). During the post-process, the
accepted particles are weighted by wi = Kε(δ[si, sobs]) where Kε is a nonparameteric kernel with bandwidth ε.
The coefficient β is then estimated via a weighted least square regression. This post-process is easy to implement
and thus very popular among ABC practitioners. It should be seen as a trick to decrease ε without increasing
the computation time.

It has been theoretically studied by Blum (2010) when the aim is a posterior density estimation. Alternatives
using non-linear regression have also been proposed by Blum and François (2010). The principle is to model
the distribution of (θ, η(x)) by

θ = g(η(x)) + u,

and then to estimate g by a neural net with one hidden layer.
Sadly, the error we commit by replacing (1) with (3) is the most difficult to control. Of course, distributions

(1) and (3) are equal when the statistic η(x) is sufficient.

2.4. ABC model choice
We can also perform a Bayesian model choice with ABC (Grelaud et al., 2009). Consider that we have a

finite set of models, Mk, k = 1, . . . ,m, and that each of them is parametrised by some vector θ ∈ Θk. Each
parameter space (whose dimension can depend on k) is equipped with a prior distribution πk(θ). And the set
of models is equipped with a (discrete) prior distribution π(k). But the non-linear projection η : X → Rd via
the summary statistics should not depend on k. Denoting by fk(x | θ) the likelihood of model Mk, the ABC
model choice is given in Algorithm 2.

The accepted particles (ki) at the end of the algorithm are distributed according to

π
(
k
∣∣ δ[s, sobs] ≤ ε

)
.

And

π̂(k |xobs) =

∑
1{ki = k, δ[si, sobs] ≤ ε}∑

1{δ[si, sobs] ≤ ε}
is an estimate of the posterior probability of model Mk.
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Algorithm 2 ABC model choice
1: for i = 1→ Nprior do
2: draw ki from the prior π(k)
3: draw θ ∈ Θki

from πki
(θ)

4: draw x from the likelihood fki
(x | θ) of model Mki

5: compute si = η(x)
6: store the particle (ki, si)
7: end for
8: for i = 1→ Nprior do
9: compute the distance δ[si, sobs]
10: reject the particle (ki, si) if δ[si, sobs] > ε
11: end for

There has been a debate whether we can trust ABC (Robert et al., 2011). The first important fact one should
be aware is that the concatenation of sufficient statistics for each model does not give a sufficient statistic for
the model choice problem. For example, assume that the data set is composed of iid Gaussian drawings with
mean θ and that we have two models at hand, the first one being N ((θ, . . . , θ), I) and the second one being
N ((θ, . . . , θ), 2I), where I is the identity matrix. Then, η(x) =

∑
xi is a well known sufficient statistic (θ is

the expected value of iid drawings of Gaussian distributions) for both models. But η(x) will not be able to
discriminate the models. Actually, the covariance of the data set is a sufficient statistics for the above model
choice. The debate on confidence of ABC model choice has been closed by Marin et al. (2013), who provide
conditions on the summary statistics η(x) to ensure consistency of ABC model choice when the size of the data
set increases.

3. Calibration

3.1. Acceptation threshold
When the Bayesian analysis requires ABC, it is hard or event impossible to set the acceptation threshold ε

in advance, i.e., before any simulation. Most often, the user sets the computational effort that he is prepared
to face, i.e., Nprior, the number of simulations from the model and sets the size of the output, N , for the
accuracy of the sample estimates (kernel density estimates, quantile estimates, etc.). Then the threshold ε
appears as a Monte Carlo approximation of the quantile of order α = N/Nprior of the distances d(η(x), sobs)
when x ∼

∫
π(θ)f(x | θ)dθ.

Because this calibration procedure of ε depends on the simulated data sets, its theoretical analysis is complex.
Actually, it can be seen then as an N -nearest neighbour procedure among a simulated sample of size Nprior.
This is the point of view adopted by Biau et al. (2012), who prove asymptotic properties of the posterior density
estimation. Their theoretical results favour a calibration of N such that N ≈ N

(m+4)/(m+d+4)
prior when m is the

dimension of θ and d > 4 is the dimension of η(x).
Another more original way to calibrate ε has been proposed by Ratmann et al. (2013) in order to obtain first

order exact approximations. The authors assume that the data set might be decomposed into n iid blocks, and
that the vector of summary statistics has the same structure. They take advantage of that last structure to
calibrate ε and the number of independent blocks in the simulated data sets.

As in Wilkinson (2013), one might also consider that the observed summary statistics are noisy, either because
the (intractable) likelihood comes from a model that does not fit to the reality or because their data collection
process has added some noise. Hence, one might be appealed to set a model on the summary statistics space
such that

snoisy = η(x) + γ, where x ∼ f(x | θ) and γ ∼ Kε(γ). (5)
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Then the threshold ε (or the bandwidth of the kernel Kε on the summary statistics space that weights the
accepted particles in the algorithm) is calibrated by an evaluation of the error and ABC becomes exact in that
framework.

3.2. Summary statistics
Let us go back to our initial problem, which is computing (1) with a Monte Carlo approximation of (4). The

major part of the difference is controlled by the choice of the summary statistics η(x), which is paramount to
the success of the approximation. In many concrete situations, the statistics are chosen by the practitioner,
depending on the problem at hand. Several studies provide guidance in this choice.

Joyce and Marjoram (2008) have proposed an inclusion-exclusion scheme assuming we have at our disposal
a large set of univariate summary statistics. This scheme is related to the simulation experiments performed
by McKinley et al. (2009). A review discussing dimension reduction methods in ABC has been written by
Blum et al. (2012). The most satisfactory method to assess the ability of a given summary statistic to capture
information on θ is based on the post-process presented above. A first numerical study has been performed
by Sedki and Pudlo (2012). Aeschbacher et al. (2012) advocate inclusion/exclusion via boosting, a machine-
learning algorithm combining a set of weaker learners to construct a strong learner. Each candidate is selected
based on its influence on the strong learner locally, in some neighbourhood of the observed data.

Fearnhead and Prangle (2012) have adopted a different approach in order to construct a vector of summary
statistics almost from scratch. When the aim of ABC is estimating θ, their theoretical results show that the
posterior mean of θ is the best summary statistics. The proposed scheme relies then on a first run of the ABC
algorithm to derive a predictor η̂(x) of this posterior mean, depending on the (simulated or observed) data x
trough a large collection of summary statistics. In the same vein, Prangle et al. (2013) focus on ABC model
choice, proving that the vector of posterior probabilities of each model is indeed a sufficient statistic for the
model choice problem.

Barthelmé and Chopin (2012) show that Expectation Propagation approximation inference technique, can
be adapted to the likelihood-free context. The resulting algorithm does not require summary statistics, is an
order of magnitude faster than existing techniques.

4. Speeding up the computations
The acceptation-rejection algorithm given above might be very time consuming. But, because of the inde-

pendence of each proposed particle, the computations can be easily divided to be carried out by many CPU,
i.e., the algorithm is embarrassingly parallel. In contrast, the sequential schemes presented below are not that
easy to parralelise on multi-core computers or clusters. See Marin et al. (2012b). But sequential schemes get
their efficiency from their ability to sample the parameter space in a clever way, avoiding areas of low posterior
probability.

4.1. MCMC-ABC
Indeed, when seeing the ABC acceptation-rejection algorithm as a sampler from(4), drawing particles from

the prior distribution π(θ) is inefficient, in particular when the target is much more concentrated that the prior.
The prior indeed leads to proposed values in low posterior probability areas of the parameter space. To answer
this problem, Marjoram et al. (2003) have introduced an MCMC-ABC algorithm targeting (4). The update of
the current state (θt, st) is based on a proposal (θ∗, s∗), where

θ∗ ∼ q(θt, ·), x∗ ∼ f(x | θ∗) and s∗ = η(x∗).

The proposal is accepted with accepted with probability

1 ∧ π(θ∗)q(θ∗, θt)
π(θt)q(θt, θ∗)

1{δ[s∗, sobs] ≤ ε}.
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Hence the equilibrium distribution of the chain is

π
(
θ, s

∣∣ δ[s, sobs] ≤ ε
)
.

The major drawback of the MCMC-ABC algorithm is than the threshold ε should be given in advance. If the
chosen value of ε is too large, the approximation error between (4) and (3) in not negligible anymore. But
if the chosen value of ε is too small, the Markov chain has poor mixing properties. The chain is indeed a
Metropolis-Hastings chain accepting the proposed value of θ′ if one new simulation s = η(x) from f(x | θ′) falls
into the ε-neighbourhood of the observation sobs.

4.2. Sequential improvements
In order to bypass both drawbacks of the MCMC-ABC algorithm, several population techniques have been

proposed by Sisson et al. (2007), Sisson et al. (2009), Beaumont et al. (2009), Toni et al. (2009), Drovandi and
Pettitt (2011), Del Moral et al. (2012) and Sedki et al. (2012), based on a decreasing sequence of thresholds
ε1 > ε2 > · · · > εT . We refer the reader to the review of Marin et al. (2012a) for a description of the main
sequential algorithms. But we shall note here that the algorithm of Sedki et al. (2012) is a self-calibrated version
of the likelihood-free SMC sampler of Del Moral et al. (2006). At each iteration, a new threshold εt is tuned to
achieve a trade-off between good mixing properties of the MCMC and a small difference between (4) and (3).

4.3. Parallel tempering
Baragatti et al. (2012) have proposed to use a ABC-parallel tempering (ABC-PT) scheme to answer to the

major weakness of MCMC-ABC, namely poor mixing properties of the Markov chain when the threshold ε is
small — and it should be small so that (4) approximates (3). Their algorithm runs several MCMC-ABC chains
in parallel, each of them corresponding to a given value of the threshold. And they allow fair swaps between
two chains as in standard parallel tempering. If the thresholds of the K chains are ε1 < · · · < εK , then the i-th
Markov chain has marginal equilibrium distribution

π
(
θ, s
∣∣ δ(η(x), sobs) ≤ ε

)
.

And the equilibrium law of the joint chain is the tensor product of these marginals. To achieve this goal, after
each internal update of the K chains, a pair of chains, i < j say, is chosen uniformly. A swap between the
i-th and the j-th chain is then accepted if d(sj , sobs) ≤ εi. This exchange move satisfies ABC requirements as
there is no need to compute any likelihood, and moreover, the acceptance rate of the exchange depends only the
tolerance thresholds. Though not adaptive in the calibration of the thresholds, the authors rightly recommend
ABC-PT when the posterior is multi-modal.

5. Conclusion
Approximate Bayesian computation has proved itself useful to handle intractable likelihood in a quite general

context, requiring only one’s ability to perform simulation from the model. This explains its popularity in various
fields such as population genetics, latent diffusion models, epidemiology. . . The literature on ABC is increasing
rapidly. Because of the non-linear projection with the summary statistics, ABC can also handle large data sets.
In comparable settings, Laplace approximations or variational Bayes solutions have also been advanced. The
old Laplace approximation, see, e.g. Tierney and Kadane (1986), is based on some analytic computations that
cannot be conducted in all situations. Meanwhile, the variational Bayes schemes have often few theoretical
supports. We can also mention that Bayesian computation via empirical likelihood Mengersen et al. (2013) is
a clever scheme to handle large data sets on which the “true” posterior distribution will never be known.
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