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DEFORMATION FIELD CORRECTION TO PRESERVE TOPOLOGY FOR IMAGE
REGISTRATION

Solène Ozeré1

Abstract. In this paper, the author addresses the issue of designing a theoretically well-motivated
and computationally efficient method ensuring topology preservation on image-registration-related de-
formation fields. The model is motivated by a mathematical characterization of topology preservation
for a deformation field mapping two subsets of Z2, namely, positivity of the four approximations to
the Jacobian determinant of the deformation on a square patch. The first step of the proposed al-
gorithm thus consists in correcting the gradient vector field of the deformation at the discrete level
in order to fulfill this positivity condition. Once this step is achieved, it thus remains to reconstruct
the deformation field, given its full set of discrete gradient vectors. The author propose to decom-
pose the reconstruction problem into independent problems of smaller dimensions, yielding a natural
parallelization of the computations and enabling us to reduce drastically the computational time (up
to 80 in some applications). For each subdomain, a functional minimization problem under Lagrange
interpolation constraints is introduced and its well-posedness is studied: existence/uniqueness of the
solution, characterization of the solution, convergence of the method when the number of data in-
creases to infinity, discretization with the Finite Element Method and discussion on the properties of
the matrix involved in the linear system. Numerical simulations based on OpenMP parallelization and
MKL multi-threading demonstrating the ability of the model to handle large deformations (contrary to
classical methods) and the interest of having decomposed the problem into smaller ones are provided.

Introduction
Given two images called Template and Reference, registration consists in determining an optimal diffeomor-

phic transformation ϕ such that the deformed Template image is aligned with the Reference. This technique is
encountered in a wide range of fields, such as medical imaging, when comparing data to a common Reference
frame, when fusing images that have not necessarily been acquired through similar sensors, or when tracking
shapes. For images of the same modality, the goal of registration is to correlate the geometrical features and
the intensity level distribution of the Reference and those of the Template. For images produced by different
mechanisms and possessing distinct modalities, the goal of registration is to correlate the images while maintain-
ing the modality of the Template.The deformation must remain physically and mechanically meaningful, and
reflect material properties: self-penetration of the matter (indicating that the transformation is not injective,
which is not physically consistent) should be prohibited. When topology preservation is violated, the convexity
of the deformed region is infringed, signifying that the images of the corner points of a square patch cross over
the diagonal connecting their neighbours. Visually, the deformation field exhibits twists and foldings. This
currently occurs when dealing with problems involving large magnitude deformations.
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The necessity of preserving topology arises in brain mapping for instance. It is well-known that the human
cortex has a spherical topology (i.e., is homeomorphic to the sphere), so throughout the registration process,
this feature must be preserved. Generally speaking, as soon as the shapes to be correlated are homeomorphic,
the preservation of orientation must be ensured.

Prior related works addressed this question of maintaining topology. In variational frameworks, the main idea
is to control the Jacobian determinant of the deformation, proper measure for the local volume transformation
under the considered deformation. The work by Ashburner et al. (see [1], [2] and [3]) and the work by Musse
et al. (see [4]) should be mentioned. In [4], the deformation map is modeled as a hierarchical displacement field
decomposed on a multiresolution B-splines basis. Topology preservation is enforced by controlling the Jacobian
of the transformation. The problem amounts to solving a constrained optimization problem: the residual energy
between the target and the deformed source image is minimized under constraints on the Jacobian. This paper
is then extended to the 3D case by Noblet et al. (see [5]). The main difference with the proposed approach is
that, in our case, the set of feasible transformations is not restricted to a certain class of mappings. In [6], Haber
and Modersitzki address the issue of non-parametric image registration under volume-preserving constraints.
They propose to restrict the set of feasible mappings by adding a volume-preserving constraint which forces the
Jacobian of the deformation to be equal to 1. In [7], the authors pursue in the same direction: they propose to
keep the Jacobian determinant bounded, which leads to an inequality-constrained minimization problem.
An alternative to the straight penalization of the Jacobian of the deformation was proposed by Christensen
and collaborators. In [8], they introduce a viscous fluid registration model in which objects are viewed as fluids
evolving in accordance with the fluid dynamic Navier-Stokes equations. This model is complemented by a
regridding technique ensuring positivity of the Jacobian determinant. The method consists in monitoring the
values of the Jacobian determinant of the deformation. If the values drop below a defined threshold, the process
is reinitialized taking as initialization the last computed deformed Template. However, for problems involving
large deformations, numerous regridding steps might be required. Numerically, the resulting deformation field
(computed as the composite of intermediate deformations) may not fulfill the topology-preserving conditions,
even if the intermediate ones do.

1. First step : Correction of the deformation
The first step consists in applying the same procedure as the one adopted by Le Guyader et al. in [9].

Given an arbitrary deformation obtained after a registration process, the first step consists in correcting the
deformation where the topology is not preserved. To lighten the presentation, the author only provide the key
idea of this method and refer the reader to [9] for further details.
Let Ω be a connected bounded open subset of R2 representing the reference configuration, with Lipschitz
boundary ∂Ω.
Let h : (x1, x2) ∈ Ω̄ 7→ h(x1, x2) = (f(x1, x2), g(x1, x2))T be the deformation of the reference configuration.
A deformation is a smooth mapping that is orientation-preserving and injective except possibly on ∂Ω. Denote
by u the displacement field associated with h, i.e., h = id + u.
The deformation gradient is ∇h : Ω̄ → M2(R) defined by ∇h = I2 + ∇u with M2(R) the set of real square
matrices of order 2.
The correction algorithm is based on the following proposition which provides a set of conditions to be fulfilled
in the discrete setting to ensure topology preservation in the continuous domain.

Proposition 1.1. (From Karaçali and Davatzikos in [10])
Let C be the class of deformation fields h = (f, g) defined over a discrete rectangle Ω = [0, 1, . . . ,M1] ×
[0, 1, . . . , N1] ⊂ N2 for which Jff , Jfb, Jbf , Jbb are positive for all (x, y) ∈ Ω.
Let h = (f, g) be a deformation field belonging to C. Then its continuous counterpart determined by the inter-
polation of h over the domain ΩC = [0,M1]× [0, N1] ⊂ R2 using the interpolant Φ given by Φ(x, y) = Ψ(x)Ψ(y)
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with

Ψ(t) =

 1 + t if −1 ≤ t < 0
1− t if 0 ≤ t < 1
0 otherwise

preserves topology, with the backward and forward finite difference schemes f bx, ffx , f by , ffy to approximate the
partial derivatives of f (similarly for g) and

∣∣∣∣∣∣∣∣
Jff = ffx (p1)gfy (p1)− ffy (p1)gfx(p1)
Jbf = f bx(p2)gfy (p2)− ffy (p2)gbx(p2)
Jfb = ffx (p3)gby(p3)− f by(p3)gfx(p3)
Jbb = f bx(p4)gby(p4)− f by(p4)gbx(p4).

Figure 1. Layout of the points on a reference patch.

The general idea resulting from Proposition 1.1 is to balance, at the discrete level and at each node of the
grid, the gradients of the displacement vectors by a parameter α ∈]0, 1[, in order to comply with the above
conditions. The existence of such a parameter α is guaranteed by the intermediate value theorem. Note that
applying the correction parameter to the displacement vector field itself would fail to work. It would not guar-
antee that the obtained discrete Jacobians fulfill these requirements. The algorithm depicted in [9] provides a
unique optimal correction parameter per grid node.

2. Second step : Deformation reconstruction
The issue to be addressed now lies in the reconstruction of the deformation field, given its discrete set of

gradients, with the fewest computations possible (real-time computations should be expected).
Unlike the previous model on this topic [9], formulated as a functional minimization problem on the whole
domain Ω (-meaning in particular that the computations were made even on regions of the deformation map
complying with the orientation-preserving requirement), the author propose to concentrate the computational
effort on the subdomains of the deformation grid exhibiting overlaps and to set Lagrange interpolation conditions
on the boundary of the subdomains, reproducing more faithfully the physics of the problem. This allows to
apply the reconstruction process on each region independently and to reduce significantly the computational
cost. In the sequel, assume that N nonempty connected bounded open subsets Ωi of Ω with Lipschitz boundary,
i ∈ {1, · · · ,N} have been identified (manually for the moment) on which orientation preservation is violated.
Then, let introduce a mathematical model of reconstruction, valid for each subdomain Ωi, i ∈ {1, · · · ,N}.
A Dm-spline approach is retained (cf. [11]). Generally speaking, the Dm-splines over an open subset of Rn
are multidimensional minimizing splines, i.e., functions defined on Ω subjected to interpolation or smoothing
conditions and that minimize an energy functional involving derivatives of order m.

2.1. Minimization of the energy functional
As said previously ∀i ∈ {1, · · · ,N}, Ωi is a nonempty connected bounded open subset of Ω ⊂ R2 with

Lipschitz boundary. Let ν be an integer such that ν ∈ {1, · · · ,N}. The problem is phrased as a constrained
functional minimization problem on a convex subspace of the Hilbert space V = H3(Ων ,R2) so that the Sobolev’s
embedding H3(Ων ,R2) 	 C1(Ων ,R2) holds (see [12] or [13]). It guarantees, in particular, that the pointwise
fitting term dealing with the derivatives of the unknown is well-defined. Thus, it is possible to rebuild a
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smoother-than-required deformation field but retain only the values of the deformation components obtained at
the grid nodes (centers of gravity of the pixels). Before depicting the model, let us introduce some fundamental
mathematical notions that will be useful to state the functional minimization problem.

For any γ = (γ1, γ2) ∈ N2, let’s write |γ| = γ1 + γ2 and ∂γ = ∂|γ|

∂xγ1
1 ∂xγ2

2
. Recall that:

||v||2H3(Ων ,R2) =
∑
|γ|≤3

∫
Ων
〈∂γv, ∂γv〉2 dx1 dx2, and |v|2H3(Ων ,R2) =

∑
|γ|=3

∫
Ων
〈∂γv, ∂γv〉2 dx1 dx2,

where 〈·, ·〉2 denotes the Euclidean scalar product in R2. For the sake of clarity, we recall the general definition
of a P -unisolvent set.
Definition 2.1. (see [11])
For any l ∈ N, we denote by Pl the space of polynomial functions defined over Rn of degree ≤ l with respect
to the set of variables, and for any l ∈ N and for any nonempty connected open subset Ω in Rn, by Pl(Ω) the
space of restrictions to Ω of the functions in Pl. A set A = {a1, · · · , aN} of N points of Rn is Pl-unisolvent if
∀ {α1, · · · , αN} ⊂ R, ∃!Ψ ∈ Pl, ∀i ∈ {1, · · · , N}, Ψ(ai) = αi.

Let A = {ai}i=1,··· ,N be a set of N points of Ων containing a P1-unisolvent subset. In this application, the
set A is made of the coordinates of the image pixels included in Ων .
Let also {ωi}i=1,··· ,N be the set of N Jacobian matrices of the deformation given at {ai}i=1,··· ,N . This set is made
of the corrected gradient vectors of the deformation obtained at the correction step of the algorithm. At last, let
{bi}i=1,··· ,l be l points of Ων where the discrete gradient vectors of the deformation have been unaltered (so the
deformation is unchanged). In all our applications, these points will belong to the boundary ∂Ων of Ων . We set
Lagrange interpolation constraints at these points. It means that if h denotes the unaltered deformation and v
denotes the unknown deformation of the minimization problem, we must have: ∀i ∈ {1, · · · , l} , v(bi) = h(bi).
Let K be the set defined by K = {v ∈ H3(Ων ,R2), β(v) = η}, with

β :
∣∣∣∣ H3(Ων ,R2)→ R2l

v 7→ β(v) =
(
v(b1), · · · , v(bl)

)T
and η =

(
h(b1), · · · , h(bl)

)T . The convex set K is closed as the reciprocal image of a closed set by a continuous
mapping. The approximation problem can be stated as follows: given the set of N Jacobian matrices defined at
{ai}i=1,··· ,N , search for v sufficiently smooth such that ∀i ∈ {1, · · · , N}, the Jacobian matrix Dv evaluated at
ai is close to wi and such that ∀i ∈ {1, · · · , l}, v(bi) = h(bi). In this purpose, we need the following additional
notations. We denote by ρ the operator defined by:

ρ :
∣∣∣∣ H2(Ων ,R2×2)→ (R2×2)N

v 7→ ρ(v) =
(
v(a1), v(a2), · · · , v(aN )

)T . (1)

The problem is then cast as an optimization one by means of functional Jε defined by:

Jε :
∣∣∣∣ H3(Ων ,R2)→ R
v 7→ 〈ρ(Dv)− w〉2N + ε |v|2H3(Ων ,R2),

with ε > 0 a tuning parameter and with w =
(
w1, w2, · · · , wN

)T ∈ (R2×2)N . The operator 〈·, ·〉N is defined as

follows: ∀ξ ∈
(
R2×2)N ,∀η ∈

(
R2×2)N , 〈ξ, η〉N =

N∑
i=1

4∑
j=1

ξijηij and 〈ξ〉N = 〈ξ, ξ〉
1
2
N . The first term of functional

Jε ensures closeness to the data while the second component is a regularizing component. We consider the
following minimization problem : {Search for σε ∈ K such that

∀v ∈ K,Jε(σε) ≤ Jε(v). (2)
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It can be noticed that minimizing Jε with respect to v is equivalent to minimizing:
〈ρ(Dv)〉2N − 2〈ρ(Dv), ω〉N + ε |v|2H3(Ων ,R2).

From now on, we thus denote by Jε the new functional :

Jε :
∣∣∣∣ H3(Ων ,R2)→ R
v 7→ 〈ρ(Dv)〉2N − 2〈ρ(Dv), ω〉N + ε |v|2H3(Ων ,R2).

The goal being to prove the existence/uniqueness of the solution of the introduced functional minimization
problem, the functional Jε is rephrased in terms of the bilinear form a and the linear form L defined hereafter.

a :
∣∣∣∣ H3(Ων ,R2)×H3Ων ,R2)→ R

(u, v) 7→ 〈ρ(Du), ρ(Dv)〉N + ε (u, v)3,Ων ,R2 ,
L :
∣∣∣∣ H3(Ων ,R2)→ R
v 7→ 〈ρ(Dv), ω〉N

.

with (u, v)3,Ων ,R2 =
∑
|α|=3

∫
Ων 〈∂

αu, ∂αv〉2 dx1 dx2.

The minimization problem thus becomes :{Search for σε ∈ K such that
∀v ∈ K, a(σε, σε)− 2L(σε) ≤ a(v, v)− 2L(v). (3)

The mappings a and L are continuous, but the trouble is that the bilinear form a is not V -elliptic, which
prevents us from applying Stampacchia’s theorem [13] straightforwardly. To circumvent this issue, an artificial
term is introduced in the minimization problem formulation as follows:{

Search for σε ∈ K such that
∀v ∈ K, a(σε, σε)− 2L(σε) + ‖β(σε)‖22l ≤ a(v, v)− 2L(v) + ‖β(v)‖22l.

(4)

This new phrasing involves the bilinear form denoted by â defined by â :
∣∣∣∣ H3(Ων ,R2)×H3(Ων ,R2)→ R

(u, v) 7→ a(u, v) + 〈β(u), β(v)〉2land the following propositions hold.

Proposition 2.2. The mapping ‖̂.‖ defined on H3(Ων ,R2) by ‖̂.‖ :
∣∣∣∣ H3(Ων ,R2)→ R
v 7→

√
â(v, v) is an Hilbertian norm.

Proof. The proof is based on the argument of connectedness of Ων and the property of P1-unisolvence of the
set A. �

Proposition 2.3. The norm ‖̂.‖ is equivalent to the norm ‖.‖H3(Ων ,R2) on H3(Ων ,R2).

Proof. The proof is based on a result of equivalence of norms by Nec̆as [14] and on the continuity of the bilinear
form â on H3(Ων ,R2)×H3(Ων ,R2). �

It results in the following theorem.

Theorem 2.4. Problem (2) admits a unique solution σε ∈ K. This solution is characterized by the variational
inequality ∀v ∈ K, â(σε, v − σε) ≥ L(v − σε).

Proof. The proof is based on Stampacchia theorem [13]. �

2.2. Characterization of the solution
Let K0 be the vector subspace of H3(Ων ,R2) defined by K0 = {v ∈ H3(Ων ,R2) | β(v) = 0R2l}.

Let S be the set defined by S = {u ∈ H3(Ων ,R2) | ∀v ∈ K0, a(u, v) = L(v)}.
Then the following proposition holds.

Proposition 2.5. The unique solution σε of problem (2) is characterized by : {σε} = K ∩ S.
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2.3. Lagrange multipliers
We now introduce Lagrange multipliers, which enables us to define the variational formulation of problem

(2) on the whole space H3(Ων ,R2) and to obtain a variational equality instead of a variational inequality. Let
K⊥0 be the orthogonal of K0 in V for the scalar product â(·, ·).

K⊥0 = {u ∈ H3(Ων ,R2) | â(u, v) = 0, ∀v ∈ K0}.

The space V can be written as the direct sum V = K⊥0 ⊕K0.
Let β|K⊥0 be the restriction of β to K⊥0 . Then β|K⊥0 is a topological isomorphism.

Theorem 2.6. If σε is the unique solution of problem (2), then σε is also the solution of the following problem
with Lagrange multipliers : {

Search for (σε, λ) ∈ K × R2l,

∀v ∈ V, a(σε, v)− L(v) + 〈λ, β(v)〉2l = 0.
(5)

2.4. Theoretical convergence result
Let D be a subset of R+∗ admitting 0 as accumulation point. For each d ∈ D, let Ad be a set of N = N(d)

distinct points of Ων containing a P 1-unisolvent subset.
We suppose that supx∈Ων δ(x,A

d) = d, where δ is the Euclidean distance in R2. Thus d is the radius of the
largest sphere included in Ων that contains no point from Ad (Hausdorff distance). Also,

lim
d→0

sup
x∈Ων

δ(x,Ad) = 0. (6)

For all d ∈ D, we denote by ρd the mapping defined by : ρd :

∣∣∣∣∣ H2(Ων ,R2×2)→ (R2×2)N(d)

v 7→ ρd(v) =
(
(v(a))a∈Ad

)T .

Then we introduce the norm ‖̂·‖d equivalent to the norm ‖·‖H3(Ων ,R2) on H3(Ων ,R2) defined by: ∀v ∈ H3(Ων ,R2),

‖v̂‖d =
[
< ρd(Dv) >2

N(d) +ε |v|2H3(Ων ,R2) + ‖β(v)‖22l
] 1

2 .

The following theorem holds :

Theorem 2.7. Suppose that there exists a function f̂ ∈ K such that for all d ∈ D: ρd(Df̂) = ω, and
ε = ε(d) ∈]0, ε0], ε0 > 0.
For all d ∈ D, we denote by σdε the unique solution of problem (2), then under the above assumptions we have:

lim
d→0
‖σdε − f̂‖H3(Ων ,R2) = 0. (7)2.5. Discretization

We now discretize the variational problem (5). Let H be an open bounded subset of R+∗ admitting 0 as
accumulation point. Let us recall that the elements of class Ck′ can be used for the computation of discrete
Dm-splines (in our case m = 3) with m ≤ k′ + 1. Consequently, (k′,m) = (2, 3) is a satisfactory combination.
We also recall that for all n ∈ N and for all subset E of R2, Ql(E) denotes the space of the restrictions to E of the
polynomial functions over R2 of degree ≤ l with respect to each variable. ∀h ∈ H, let (Vh)2 be the subspace of
H3(Ων ,R2) of finite dimension with (Vh)2 	 C1(Ων ,R2). The reference finite element is the Bogner-Fox-Schmit
C2 rectangle (cf. [15]). It is defined as the following triple (K,PK ,ΣK):

• Let b00 =
(
b100, b

2
00
)
∈ R2, h1, h2 > 0. K ⊂ Ων is the rectangle with vertices bβ = b00 + γ1 h1 ~e1 + γ2 h2 ~e2

with γ = (γ1, γ2) ∈ N2 such that 0 ≤ γ1 ≤ 1 and 0 ≤ γ2 ≤ 1, and (~e1, ~e2) the canonical basis of R2.
• PK = Q5(K).
• The set of linear mappings ΣK is defined by: ΣK = {v 7→ ∂αv(bγ) | |α|∞ ≤ 2}, where, if α = (α1, α2),
|α|∞ = max (α1, α2).
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The number of degrees of freedom of the Bogner-Fox-Schmit rectangle of class C2 is thus equal to 36.

The basis functions are defined by pγα(x1, x2) = hα1
1 hα2

2 qγ1
α1

(
x1 − b100
h1

)
qγ2
α2

(
x2 − b200
h2

)
with:

q0
0(t) = (1− t)3(6t2 + 3t+ 1), q0

1(t) = t(1− t)3(3t+ 1), q0
2(t) = 1

2 t
2(1− t)3

q1
0(t) = t3(6t2 − 15t+ 10), q1

1(t) = t3(1− t)(3t− 4), q1
2(t) = 1

2 t
3(t− 1)2.

We can prove that problem (5) is decoupled with respect to each component. Let (vq)q=1,2 be the components
of v ∈ H3(Ων ,R2), ((ωiq)T )q=1,2 the qth row of ωi, ∀i ∈ {1, . . . , N}, and λ = (λq)q=1,2 with λq ∈ Rl.
Problem (5) can therefore be stated by:

Search for (σε = (σqε )q=1,2, λ = (λq)q=1,2) ∈ H3(Ων ,R2)× R2l such that
σε ∈ K,
∀v = (vq)q=1,2 ∈ H3(Ων ,R2), ∀q ∈ {1, 2} ,
N∑
i=1
〈∇σqε (ai),∇vq(ai)〉2 + ε (σqε , vq)3,Ων ,R +

l∑
i=1

λqi v
q(bi) =

N∑
i=1
〈∇vq(ai), ωiq〉2.

(8)

We solve (8) in Vh for q = 1, 2. Let Mh be the dimension of Vh and {Phj }j=1,...,Mh
be basis functions (for

the sake of clarity, from now on, we use this notation for the basis functions). We denote by (σh,qε )q=1,2 the
approximate solution of (8) in (Vh)2; σh,qε is decomposed into the basis {Phj }j=1,...,Mh

as follows:
∀q = 1, 2,

∃(αqj)j=1,...,Mh
∈ R such that σh,qε =

Mh∑
j=1

αqjP
h
j .

(9)

For q = 1, 2, taking successively vq = Phk , k = 1, . . . ,Mh in (8), the studied problem becomes:

Search for αq ∈ RMh such that
Mh∑
i=1

αqiP
h
i (bj) = ηqj , ∀j ∈ {1, · · · , l} ,∀k = 1, . . . ,Mh,

N∑
i=1

Mh∑
j=1

αqj〈∇P
h
j (ai),∇Phk (ai)〉2 + ε

Mh∑
j=1

αqj(P
h
j , P

h
k )3,Ων ,R −

N∑
i=1
〈∇Phk (ai), ωiq〉2 +

l∑
i=1

λqiP
h
k (bi) = 0.

(10)

The numerical problem boils down to the resolution of two decoupled sparse linear systems of dimension (Mh+
l)× (Mh + l) which can be written by means of matrices Ah, Bh and Rh,

Ah =
(
∂Phj
∂x1

(ai)
)

1≤i≤N,
1≤j≤Mh

, Bh =
(
∂Phj
∂x2

(ai)
)

1≤i≤N,
1≤j≤Mh

∈ (MN×Mh
(R))2

,

Rh =
((
Phj , P

h
i

)
3,Ω,R

)
1≤i≤Mh,1≤j≤Mh

∈MMh×Mh
(R).

Both systems are written in the following way:{ (
(Ah)TAh + (Bh)TBh + εR

)
αq + (Ph)Tλq = ξq,

with Phαq = ηq, ∀q ∈ {1, 2} ,
(11)
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where Ph =
(
Phj (bi)

)
1≤i≤l,

1≤j≤Mh

∈ Ml×Mh
(R) and ξq =

(
N∑
i=1
〈∇Phk (ai), ωiq〉2

)
1≤k≤Mh

. We group the unknown αq

and λq in a single unknown vector, and we write the system as a matrix equation of the form:
Mh l


Mh (Ah)TAh + (Bh)TBh + εR (Ph)T

l Ph 0︸ ︷︷ ︸
κh


αq

λq

 =


ξq

ηq



Remark 2.8. A result of convergence analogous to the one in Theorem 2.7 can be obtained in the discrete
setting.

Remark 2.9. The matrix κh of the system is symmetric indefinite.

Remark 2.10. In practice, the interpolation conditions are set on the boundary nodes of the finite element
mesh. In this case, we have the following result:

Proposition 2.11. Matrix κh is nonsingular.

In our application, to solve the considered linear system, we use the diagonal pivoting method due to Bunch
and Parlett [16] which computes a permutation P such that PAPT = LDLT - when solving a linear system
whose symmetric definite matrix is A-, where D is a direct sum of 1 by 1 and 2 by 2 pivot blocks and L is unit
lower triangular (see also [17]). P is chosen so that the entries in the unit lower triangular L satisfy |lij | ≤ 1.
This factorization involves n3

3 flops and once computed can be used to solve Ax = b with O(n2) work.

3. Numerical experiments
In the sequel, we provide numerical simulations. Classically, in the Dm-spline setting, parameter ε balanc-

ing the semi-norm is set to 10−6. (There also exist methods for an automatic choice of ε mainly based on
statistical considerations as the generalized cross-validation and the generalized maximum likelihood methods
(see [18] and [19]). Owing to the fact that the proposed algorithm calls basic linear algebra functions such that
transposing matrices, summing matrices, multiplying matrices or solving linear systems, it appeared relevant
to use LAPACK and Basic Linear Algebra Subprogram routines. BLAS is a corpus of routines that provide
standard building blocks for performing basic vector and matrix operations. LAPACK (designed at the outset
to exploit BLAS routines) provides routines for solving systems of linear equations among others. For each
subdomain Ων , ν ∈ {1, · · · ,N}, we obtain two disconnected linear systems to be solved with the same ma-
trix. Our resorting to BLAS/LAPACK thus seems apposite. The computations on each subdomain Ων being
independent, the use of OpenMP appeared relevant. The OpenMP Application Program Interface supports
multi-platform shared-memory programing in C/C++ and Fortran on all architectures (see the official website
http://openmp.org/wp/).

The first application involving large deformations is provided in Fig. 2 and is similar to an application given
in [20] in the case of topology-preserving segmentation. The synthetic Reference image represents two disks. The
Template image, which is defined on the same image domain (100 × 100), is made of a black ellipse such that
when superimposed on the Reference image its boundary encloses the two disks (see Fig. 2 (a)). The application
of the combined segmentation-registration process alone yields two regions exhibiting overlaps (Fig. 2(b)): the
upper part of the image including the upper disk (size 50 × 50) and the lower part of the image containing
the lower disk (size 50 × 50). We thus propose to apply our proposed algorithm on each region independently,
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the upper region being triangulated by means of 10 rectangles in direction x and 10 rectangles in direction y,
similarly for the lower region. The computational time drops to 0.52 second, which means a depletion by a
factor 6.9 in comparison to the computational time inherent to the application of the method [9] on the whole
domain. This optimal computational time is obtained with the following requests: MKL NUM THREADS=6
and OMP NUM THREADS=2. We display the obtained topology-preserving deformation fields together with
the values of the discrete Jacobians in Fig. 2 (c) and Fig. 2 (d).

(a) Reference image and bound-
ary of the ellipse constituting the
Template image superimposed.

(b) Obtained global deformation
field when topology preservation
is not enforced.

(c) Corrected first region:
min(Jff ) = 0.06,
min(Jfb) = 0.08,min(Jbf ) = 0.09
and min(Jbb) = 0.11.

(d) Corrected second region:
min(Jff ) = 0.33,
min(Jfb) = 0.31,min(Jbf ) = 0.35
and min(Jbb) = 0.29.

Figure 2. Example of the disks.



ESAIM: PROCEEDINGS AND SURVEYS 521

Figure 3. Reference image
and boundary (in red) of the disk
constituting the Template image.

In another application, the goal is to map a disk to a slice of the brain (courtesy
of the Laboratory Of Neuro-Imaging, school of Medicine, University of California)
defined on the same image domain (size 120 × 190), while preserving topology (see
Fig. 3). When applying the combined segmentation/registration model developed
in [20] without regridding steps, we obtain a deformation field exhibiting two regions
with overlaps as depicted in Fig. 4(b) and Fig. 4(c).

If we merely apply the method developed in [9] (which consists in applying
the correction/reconstruction algorithm on the whole image domain with global
condition on the deformation component means), the execution time reaches 50.9
seconds (the domain being triangulated by means of 19 rectangles in direction x
and 12 rectangles in direction y - with 9 basis functions per node, it results in two
linear systems (one for each component of the deformation field) of size 2341 × 2341
to be solved-). By applying our proposed method (which signifies: concentrating the computational effort on
the two regions exhibiting twists- the first one of size 30 × 30 triangulated by means of 6 rectangles in direction
x and 6 rectangles in direction y and the second one of size 80 × 40 triangulated by means of 10 rectangles
in direction x and 10 rectangles in direction y -, equipping the two subproblems with Lagrange interpolation
conditions and parallelizing the code), the computational time drops to 0.63 second, which means a depletion by
a factor 80. For our configuration, the maximal number of threads is equal to 12 and the optimal computational
time is obtained with the following requests: MKL NUM THREADS=6 and OMP NUM THREADS=2. We
display the obtained topology-preserving deformation fields together with the values of the discrete Jacobians
in Fig. 4(e) and 4(f).

(a) Obtained global deformation field when
topology preservation is not enforced.

(b) Zoom on the first region exhibiting
twists.

(c) Zoom on the second region exhibiting
overlaps

(d) Global obtained deformation field after cor-
rection.

(e) Zoom on the corrected first region:
min (Jff ) = 0.20, min (Jfb) = 0.21,
min (Jbf ) = 0.17 and min (Jbb) = 0.19.

(f) Zoom on the corrected second region:
min (Jff ) = 0.13, min (Jfb) = 0.19,
min (Jbf ) = 0.21 and min (Jbb) = 0.23.

Figure 4. Example of the slice of the brain: uncorrected deformation field and orientation-preserving defor-
mation field after correction.
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Conclusion
To conclude, the obtained results are satisfactory, and less memory and time-consuming than a regridding

method.
Let us emphasize that the focus of the paper is on the mathematical presentation and well-posedness of the
method. Hence, the computational results are currently still restricted to two dimensions. Nevertheless, from a
mathematical point of view, the first stage of the algorithm can be extended to the 3D case and all the stated
results (in the reconstruction stage) hold in three dimensions. The main brake to the straight extension to 3D
is the phase of identification of subdomains where the computations need to be done. The semi-automation of
this process, based on segmentation techniques, is a work in progress.
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