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THE RESISTANCE OF THE RESPIRATORY SYSTEM, FROM TOP TO

BOTTOM ∗, ∗∗

Bertrand Maury1

Abstract. This paper proposes different levels of modeling around the notion of resistance: from the
single parameter that is commonly measured in medical practice, to more sophisticated settings that
account for the geometrical characteristics of the respiratory tract.

Résumé. Cet article propose différents niveaux de modélisation permettant de donner un sens à la no-
tion de résistance de l’arbre bronchique: de l’approche macroscopique qui définit cette résistance comme
un nombre unique, mesurable, permettant de quantifier les effets résistifs, à des cadres formels plus so-
phistiqués prenant en compte les multiples paramètres géométriques intervenant dans ces phénomènes
dissipatifs.

Introduction

The human respiratory system certainly earns the right to be called a complex system, for various reasons:

(1) The number of its constitutive elements is huge: around 16 million branches for the respiratory tract,
and 300 million of alveoli (see e.g. [24]);

(2) A great variety of physical phenomena is involved in the overall respiratory process: fluid mechanics,
advection, diffusion, surface tension together with macromolecule recruitment (surfactant), complex
chemical reactions (oxygen binding with hemoglobin), structural mechanics of heterogeneous media, to
cite a few;

(3) A wide range of orders of magnitude are involved: the typical size of the lungs is about 20 cm, the
trachea diameter is 2 cm, for smaller branches it drops down below the millimeter, alveolar size is about
a quarter mm, the alveolocapillary membrane (that separates each alveolus from capillary vessels) is
about a micrometer thick, while the red blood cell diameter is about 8 µm.

We shall focus here on a very particular aspect, still quite significant in medical diagnosis, namely the airway
resistance, and its relation with geometric characteristics of the respiratory tract.

In the context of pneumology, the airway resistance Raw is essential in characterizing the patient state in
terms of ventilation capability. It quantifies the relationship between the air flow rate through the respiratory
tract and the pressure drop between its ends: atmospheric pressure at one end, and alveolar pressure at the
other end. The first attempt to quantify this phenomenon by a single parameter was proposed a century ago by
Fritz Rohrer [20], and since then it has been used intensively in the context of medical practice, or mathematical
modeling (see e.g. [1, 9, 13,19]).
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We aim here at investigating the connections between the functionalist (or top-down) standpoint, which
consists in accounting for all resisting phenomena by a single parameter, directly accessible to measurment, and
the physiologist (bottom-up) one, which aims at recovering the “big picture” starting from the finest scale.

The objective of the approach we propose here is twofold:

(1) Develop and describe mathematical frameworks to support and enrich the notion of resistance, and
investigate its level of complexity far beyond the single parameter notion that is considered in medical
practice;

(2) show that the very tree structure of the respiratory tract provides robustness and stability with respect
to the huge number of involved parameters, thereby supporting it and, in some way, legitimating the
use of lumped (i.e. oversimplified) models to describe the dissipation phenomena that occur during
ventilation.

Section 1 is dedicated to the top-down approach, it describes how the resistance can be defined “from the
outside”, in the framework of a simple model based on the sole global volume. In Section 2 we take the reverse
standpoint: the notion of resistance is defined for a general domain, and then computed for a cylindrical pipe
(Section 2.1). The latter is used as a basic ingredient to build the notion of resistive network (2.2). A link
with the macroscopic resistance is made, and an actual computation of this global resistance is proposed in
Section 2.3 for a dyadic tree. The next two sections propose alternative standpoints: the dyadic integer setting,
that makes it possible to perfom some kind of harmonic analysis on the set of ends of the tree, and a stochastic
setting that describes the deep link between the Darcy like equations set on a network and an underlying Markov
process. A fast algorithm to compute the global resistance of a dyadic tree is proposed in Section 2.6. The
next section addresses optimality and stability issues related to the notion of resistance, from the standpoint of
constrained optimization (Section 3.1), and from a statistical standpoint (Section 3.2).

1. Top-down standpoint: global resistance of the respiratory system

The simplest mechanical model for ventilation is based on the volume V of air contained in the lung. It is
based on the following considerations: the lung is represented as a single balloon, connected to the outside world
by a pipe. The pressure within the balloon is denoted by Pa (the letter a stands for alveolar pressure). The
pressure outside the balloon, P (t), accounts for muscular efforts (contraction of the diaphragm for inspiration,
and possibly of the abdominal and intercostal muscles during forced expiration). The volume V of air in the
balloon is assumed to spontaneously relax toward an equilibrium value V0. In the linear setting, the actual
difference V − V0 is related to the pressure drop by

E(V − V0) = Pa − P.

The parameter E is called the elastance, it quantifies the pull-back forces within the whole system.
As for the pipe, assumption is made that the flow rate is proportional to the pressure drop between the inlet

of the pipe and the balloon. Setting the atmospheric pressure at 0 and assuming incompressibility of the air in
the considered regime, we obtain

0− Pa = R× flow rate = RV̇ . (1)

The auxiliary variable Pa can be eliminated, and we finally have

RV̇ + E(V − V0) = −P (t),

that is a first order linear equation for the volume t 7→ V (t), with two constant parameters E (elastance) and
R (resistance), and with a time-dependent forcing term P (t).

The airway resistance R can be measured experimentally, in a way that is conditioned by this very model.
Let us mention here a simple way to perform it in practice, according to the so-called interrupter method. This
method (see e.g. [19]) is based on a sudden interruption of airflow during spontaneous breathing. It is considered
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that during a short time after the interruption, the pressure at the mouth balances with the alveolar pressure
Pa. This interruption is caused by the closure of a valve. The resistance is then deduced from Formula (1):

0− Pa = RV̇ ,

where V̇ is the flow rate at the time of occlusion of the valve (more precisely right before this interruption, since
it drops down to zero afterwards). Such measurements lead to values typically between 1 and 2, expressed in
the unit that is standard in this context, i.e. cm H2O s L−1 = hPa s L−1.

Further extensions. There is a huge literature dedicated to extensions / improvements of this simplistic
model. As far as the resistance is concerned, the linearity of the relation between the flow rate and the pressure
jumps can be ruled out. Actually, the nonlinear dependence of the flux with respect to the pressure jump
was already mentioned in the 1915 seminal paper [20]. It should be stressed that the very definition of the
resistance, as we presented it, is challenged by this nonlinear setting. As soon as the relation involves more than
one parameter (as in the quadratic case), the notion itself becomes nebulous. We refer to [16,18] for a detailed
account of extra factors that may affect the overall resistance, but we shall restrict ourselves here to the linear
model that is based on a unique and constant parameter.

Outcomes of the linear model. Despite its simplicity, this model fairly reproduces the ventilation process
in the normal regime, and it allows to investigate how the process can be affected by the perturbation of the
parameters. We end this section by describing straightforward (but meaningful) outcomes of the linear model.
Consider the typical situation of a T -periodic forcing scenario (see [16] for further details)

P (t) =

∣∣∣∣∣ Pinsp < 0 in [0, Tinsp[

Pexp ≥ 0 in [Tinsp, T [
(2)

where T is the ventilation period, and Tinsp < T is the duration of the inspiration phase. No matter what
the initial condition is, the volume V (t) converges to a periodic function. The gap between the minimal and
maximal volume is called the Tidal Volume, it quantifies the efficiency of the ventilation process in terms of
oxygen renewal (and carbon dioxide evacuation). It can be expressed as

VT = Λ(T, Tinsp, λ)
Pexp − Pinsp

E
(3)

where Λ is a dimensionless constant that accounts for resistance limitation effects. It expresses as

Λ(T, Tinsp, λ) =

(
1− e−λTinsp

) (
1− e−λ(T−Tinsp)

)
1− e−λT

(4)

where λ = E/R is the time constant. This expression assesses the high robustness of the process with respect
to resistance variations. In the normal regime, τ = R/E is of the order 0.5 s, Tinsp ≈ 2 s, T ≈ 5 s, so that
Λ is very close to 1, in a robust way. Indeed, Λ considered as a function of the sole resistance R is very flat
in the neighborhood of the standard value for R (that is between 1 and 2 cm H2O s L−1). It can be shown
straightforwardly that all the derivatives of Λ with respect to R vanish at R = 0 (see again [16]).

2. Bottom up standpoint

We aim now at describing more formally the dissipation phenomena that occur within the respiratory tract.
We shall present here two sets of partial differential equations for which a notion of resistance can be defined.
The Stokes equations describe the actual motion of the air in small pipes, and they are the theoretical basis
of dissipative phenomena within the respiratory tract (Poiseuille’s law). Besides, the Darcy equations describe
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the motion of a fluid in a porous medium. The latter do not directly describe the air flow in the respiratory
tract, but they are formally very close to the resistive network system that we shall obtain from Poiseuille’s
law. Let us stress that we disregard here inertial effects. As a consequence, neither the partial differential
equations (Stokes and Darcy) that we shall consider, nor the resulting discrete problems on networks, involve
any time-derivative; they all express instantaneous force balance rather than the full Newton’s law.

2.1. Fluid models

The general setting is the following: we consider a domain Ω, the boundary Γ of which is decomposed in
three components (not necessarily connected):

Γ = Γin ∪ Γout ∪ Γw,

that are respectively the inlet, the outlet, and the lateral walls. We consider that the domain is filled with a
viscous fluid (viscosity µ). The so-called Pressure Drop Problem problem reads:

−µ∆u +∇p = 0 in Ω,

∇ ·u = 0 in Ω,

u = 0 on Γw,

µ∇u ·n− p n = −Pin n on Γin,

µ∇u ·n− p n = −Pout n on Γout.

(5)

The boundary conditions on Γout and Γin are called free outlet conditions, although they concern inflow as well
as outflow. They express the asumption that the outside medium (upstream Γin and downstream Γout) are
both set at a given pressure, which balances with the normal stress on both boundaries.

Definition 2.1. (Resistance of a domain (Stokes setting))
Let u be the velocity field that solves Problem (5). The flux Q is defined as

Q = −
∫

Γin

u ·n =

∫
Γout

u ·n. (6)

By linearity of the Stokes equations, this flux linearly depends on the pressure drop Pin−Pout, and the resistance
R = R(Ω) between Γin and Γout is defined by

Pin − Pout = RQ. (7)

This resistance can be defined in a variational way. Let us define K as

K =

{
v ∈ H1(Ω)n , v|Γw

= 0 , ∇ ·v = 0 ,

∫
Γin

v ·n = −1

}
,

where n is the space dimension. The resistance is then defined (see [16]) as

R = inf
v∈K

µ

∫
Ω

|∇u|2 .

Resistance of a domain (Darcy).
The notion of resistance can also be defined in a Darcy setting. This approach is very similar to the way we
will define it for a resistive network. The situation is the following: the domain Ω is considered as a porous
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medium, in which the (Darcy) velocity is defined as u = −k∇p, where p is the pressure, and k the permeability
of the medium. 

u + k∇p = 0 in Ω,

∇ ·u = 0 in Ω,

u ·n = −k ∂p

∂n
= 0 on Γw,

p = Pin on Γin,

p = Pout on Γout.

(8)

The flux Q and the resistance R are then defined as previously (equations (6) and (7)), so that

Pin − Pout = RQ = R

∫
Γout

u ·n = R

∫
Γin

k
∂p

∂n
.

A standard Poisson problem on the pressure is obtained by eliminating the velocity.

−∇ · k∇p = 0

with Neuman boundary conditions on Γw, and Dirichlet B.C.’s on Γin and Γout. The energy balance is obtained
by multiplying Poisson’s equation by p, and using Green’s formula:

0 =

∫
Ω

k |∇p|2 −
∫

Γin

k
∂p

∂n
p−

∫
Γout

k
∂p

∂n
p =

∫
Ω

k |∇p|2 + Pin

∫
Γin

u ·n + Pout

∫
Γout

u ·n,

thus the rate of dissipated energy within the porous medium is

P =

∫
Ω

k |∇p|2 = (Pin − Pout)Q =
1

R
(Pin − Pout)2 = RQ2,

which mimics in this mechanical setting the famous Joule’s law for electric wires : P = RI2 (where I is the
electric current).

Poiseuille’s flow, resistance of pipes and networks.
In the case where Ω is a circular cylinder of length L and diameter D, Problem (5) can be solved exactly
(parabolic profile), and the analytic expression of the resistance is obtained:

R =
128µ

π

L

D4
. (9)

We consider now a network made of three of such pipes (see Fig. 1). Assuming the lengths of the pipes
are significantly larger than their diameters, it is reasonable to expect that the pressure variations within the
bifurcation zone (the size of which is of the order of the diameters) will be much smaller than the variations along
the pipes. It leads to replace the actual 3 dimensional network of interconnected pipes by a one dimensional
network, where the bifurcation zone has been reduced down to a bifurcation point, at which a single pressure p
is defined. Denoting by ui, i = 0, 1, 2 the fluxes through the pipes (considered positive whenever fluid flows out
of the network), and ri, i = 0, 1, 2 the resistances estimated according to the approach detailed in the previous
section, Poiseuille’s law write

p− p0 = r0u0 , p− p1 = r1u1 , p− p2 = r2u2,
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Figure 1. Stokes flow in a network

and the conservation of fluid (Kirchhoff’s law) imposes

u0 + u1 + u2 = 0.

The symmetric tree model. The notion of resistance of a network will be detailed below, in a quite general
setting (see Def. 2.3). Yet, in some cases, this resistance can be straightforwardly defined and computed. As
detailed in [24], the respiratory tract, seen as a dyadic resistive tree, can be considered symmetric as a first
approximation. It means in this context that all branches of a given generation have the same length and
diameter. Making this approximation considerably simplifies the situation. Consider such a symmetric tree
with N generations, and denote by rn the resistance of any branch at generation n (between 0 and N). We
apply a unit pressure drop between the root and the boundary, that is the set of leafs at generation N (there
are 2N of such leaves). By symmetry of the problem, all pressures will be the same at all vertices of a given
generation. As a consequence, the n-th generation can be seen as a single resistance rn/2

n (resistances in
parallel). The generations being in series, the global resistance can be computed as

RN =

N∑
n=0

rn
2n

, rn =
128µ

π

`n
d4
n

,

where `n and dn are the length and diameter associated to generation n. Typical values can be found in the
literature, see Table 1, that is taken from [23]. We truncated the table after generation 16, since the contribution
of further branches to the global resistance is negligible. The computation gives R15 = 0.28 cm H2O s L−1.
Explaining the gap between this value and the measured value (between 1 and 2 cm H2O s L−1) goes far beyond
the scope of this paper. Let us simply mention some resistance factors that have been disregarded here: inertial
effects [18], upper airway resistance [26,27], resistance of the tissues [3] (although this part, strictly speaking, is
not accounted for by the interrupter method mentioned above). We will nevertheless see in Section 3.2 that a
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significant part of this gap can be explained by the sole intrinsinc variability of geometrical parameters (branch
dimensions).

2.2. Abstract resistive networks

The considerations pertaining to a single bifurcation can be extended to general networks of pipes. Let us
present here a general framework to define the notion of global resistance. We refer to [2, 4, 7, 17, 21, 28] for
thorough presentations of the underlying abstract notions, and to [5, 11] for extensions of this framework to
time-dependent (wave and heat) equations.

Definition 2.2. (Network, rooted network)
A finite resistive network is a triplet N = (V,E, r), where V is a finite set of vertices, E ⊂ V × V is the set

of edges, symmetric ((x, y) ∈ E =⇒ (y, x) ∈ E), and r is the resistance field defined in E (r(x, y) = r(y, x) for
any (x, y) ∈ E). Resistances are assumed to be positive. We shall say that a connected network N = (V,E, r)
is a rooted network when a vertex o has been singled out as the root, together with a non empty subset Γ of
V \ {o}, and we shall write N = (V,E, r, o,Γ). The set V \ ({o ∪ Γ)} of interior vertices is denoted by V̊ , it will
correspond to vertices that are subject to mass balance, whereas some fluid can be exchanged with the outside
world though vertices in Γ, or through the root o.

One considers a pressure field as a collection of real values at vertices (p ∈ RV ), and flux fields as a collection
of values on edges (u ∈ RE). Fluxes are skew-symmetric: u(x, y) = −u(y, x).

For any edge e = (x, y) of the network, Poiseuille’s law writes

p(x)− p(y) = r(x, y)u(x, y) = r(e)u(e).

Now if one denotes by j(x) the flow rate injected in the network at x , Kirchhof’s law writes,∑
y∼x

u(x, y) = j(x),

where y ∼ x means that y is connected to x (i.e. (x, y) ∈ E). Since we assume mass balance at interior vertices,

we have j(x) = 0 for x ∈ V̊ .
We shall denote by d the discrete divergence operator (it is actually the opposite of the divergence operator)

d : u ∈ RE 7−→ du ∈ RV

du(x) = −
∑
y∼x

u(x, y).

In what follows we shall be interested in conservative fluxes, i.e. fluxes u such that du(x) = 0 for any vertex x

in V̊ = V \ ({o} ∪ Γ). We define its formal adjoint d? (discrete counterpart of the gradient operator) as

d : p ∈ RV 7−→ d?p ∈ RE

d?p(e) = p(y)− p(x).

Writing Poiseuille’s and Kirchhoff’s laws leads to a Darcy-like problem{
u+ cd?p = 0 in E

du = 0 in V̊ .
(10)

where c (conductance field) stands for 1/r, i.e. c(e) = 1/r(e) for any e ∈ E. Consider now the problem that
consists in computing pressures and fluxes overall the network, when pressure values are prescribed at o and on
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Γ (the network is assumed to be rooted). By eliminating the velocity, this problem writes as a discrete Poisson
problem for the pressure, with Dirichlet boundary conditions:

dcd?p(x) = 0 ∀x ∈ V̊ ,

p(o) = 0

p(x) = P (x) ∀x ∈ Γ,

(11)

where P is a collection of prescribed pressures over the boundary Γ. Well-posedness of this problem is straight-
forward, as soon as the network is connected. Indeed, the bilinear form

(p, q) 7−→ a(p, q) =
∑
e

c(e)(p(y)− p(x))(q(y)− q(x)),

is coercive, so that Lax-Milgram theorem applies. Note that

a(p, p) =
∑
e

c(e) |p(y)− p(x)|2 ,

is the rate of energy dissipation within the network. The definition of the network resistance follows.

Definition 2.3. (Effective resistance of a network)
Let N = (V,E, r, o,Γ) be a rooted network according to Def. 2.2. We consider a uniform pressure field P ≡ 1

on Γ. We denote by p the solution to Dirichlet problem (11), and by u = −cd?p the associated flux field. The
global flux Q is obtained by summing up fluxes flowing in the network through Γ, or equivalently flowing out
through o:

Q = −
∑
x∼o

u(o, x) = du(o). (12)

The equivalent resistance of N is defined as R(N ) = 1/Q. By linearity, the flux associated to a non unit
uniforme pressure P on Γ verifies P − 0 = RQ.

The definition finds support in the energy balance, which can be written like in the Darcy setting.

Proposition 2.4. (Joule’s law for a network)
Let N = (V,E, r, o,Γ) be a rooted network, and p the solution to Problem (11) with a uniform pressure P . The

rate of dissipated energy within the network is

P = RQ2,

where Q = du(o) is the flux from Γ to o.

Proof. This is a direct consequence of the discrete counterpart of Green’s formula (summation by parts). The
dissipated energy writes

P =
∑
E

c(x, y)(p(x)− p(y))2

=
∑
x∈V̊

p(x)
∑
y∼x

c(x, y)(p(x)− p(y))︸ ︷︷ ︸
=dcd?p(x)=0

+
∑

x∈{o}∪Γ

p(x)
∑
y∼x

c(x, y)(p(x)− p(y)) (13)

= P
∑
x∈Γ

dcd?p(x) = −P
∑
x∈Γ

du(x) = Pdu(o) = Rdu(o)2,

which ends the proof. �
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Remark 2.5. Let us stress out similarities and differences between the discrete setting and the continuous one
(Darcy equations (8)). The Green formula that we used in the previous proof∑

E

c(x, y)(p(x)− p(y))(q(x)− q(y)) =
∑
x∈V

q(x)
∑
y∼x

c(x, y)(p(x)− p(y)),

is similar to the standard Green formula in a euclidean domain with no boundary (e.g. for periodic, or infinite
domains). Indeed, the notion of “boundary” in a network is arbitrary, and we did not make any topological
assumptions on the vertices that belong to Γ. In particular, they might have an arbitrary number of neighbors,
i.e. they might be within the network. We obtained pseudo boundary terms by decomposing the vertex set
into V̊ and {o} ∪ Γ, and the corresponding formula does not really have a continuous counterpart. Indeed, in
the continuous setting, it would consist in considering the Poisson problem

−∆p = 0 in Ω \X

where Ω is a domain without boundary, and X a finite collection (xi) of points in Ω, with a prescribed value pi
at xi, so that

−∆p =
∑
i

uiδxi

where ui is the flux inward the domain at xi. Then, formally, we have∫
Ω

|∇p|2 =
∑
i

uipi,

that would be the continuous counterpart of (13). The problem is that it does not make proper sense, since
points have zero capacity as soon as the space dimension is greater than 1.

To obtain a Green formula with a boundary term at the discrete level (discrete counterpart of
∫

Γ
∂p/∂n),

one has to consider the set of “boundary edges” EΓ, i.e. the set of all those edges that share a point with Γ
(with the convention that (x, y) ∈ EΓ as soon as x ∈ Γ). In this setting, we have∑
E

c(x, y)(p(x)− p(y))(q(x)− q(y)) =
∑
x∈V̊

q(x)
∑
y∼x

c(x, y)(p(x)− p(y))︸ ︷︷ ︸
=dcd?p(x)

+
∑

x∈{o}∪Γ

q(x)
∑
y∼x

c(x, y)(p(x)− p(y))

=
∑
x∈V̊

q(x)dcd?p(x)−
∑

e=(x,y)∈EΓ

c(x, y)q(x)d?p(e),

that is now the proper counterpart of∫
Ω

k∇p · ∇q = −
∫

Ω

q∇ · k∇p +

∫
Γ

k
∂p

∂n
.

To end this remark, let us also mention that the discrete counter part of the Divergence theorem in a bounded
domain ∫

Ω

∇ ·v =

∫
∂Ω

v ·n

is simply obtained by summing up the du(x)′s over all the vertices (including those on the “boundary”). In the
situation that we considered here, with du = 0 at interior points, we straightforwardly obtain

du(o) +
∑
x∈Γ

du(x) = 0, (14)
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which simply expresses the global mass balance.

Resistance operator. The resistance of a network (between two subsets {o} and Γ) has been defined as a
real number that relates a uniform pressure applied on Γ and the global flux (see Def. 2.3). When the applied
pressure field is not uniform, it calls for a more general notion.

Definition 2.6. Let N = (V,E, r, o,Γ) be a rooted network, and let φ be a collection of fluxes entering the
networks through Γ. We consider it as a function in RV , with φ(x) = 0 as soon as x /∈ Γ, whenever needed. We
define p ∈ RV as the solution to {

dcd?p(x) = φ(x) ∀x ∈ V̊ ∪ Γ ,

p(o) = 0
(15)

We denote by pΓ the collection of pressure values on Γ. The resistance operator is defined as

R : φ ∈ RΓ 7−→ pΓ ∈ RΓ,

so that the generalized Poiseuille’s law
pΓ = Rφ

holds.

The term pΓ = pΓ − 0 above can be seen as a generalized pressure drop between Γ and o, whereas φ is a
generalized (i.e. vector) flux.

Remark 2.7. Note that, in the Darcy setting, the resistance operator can be defined as well, and it takes
the form of a Neuman-Dirichlet operator. From this standpoint, one would expect a Neuman problem to be
involved in the definition, whereas (15) is a Dirichlet problem. This apparent mismatch between the continuous
and the discrete settings is again due to the fact that, in the discrete setting, Neuman conditions are actually
handled as a non homogeneous right-hand side (see Remark 2.5 regarding this matter).

2.3. Equivalent resistance for a dyadic tree

In the case of a dyadic tree like the respiratory tract, the considerations above take a particular form. We
consider here a finite, N -generation dyadic tree, with root o, which we suppose is set to pressure 0. We denote
by (xkn) its vertices, and by (ekn) its edges1, with 0 ≤ n ≤ N , 0 ≤ k < 2n. We denote by pkn the pressure at
node xkn, by rkn the resistance of ekn and by ukn the flux through ekn (see Fig. 2).

Poiseuille’s law writes

pkn − p2k
n+1 = r2k

n+1u
2k
n+1 , p

k
n − p2k+1

n+1 = r2k+1
n+1 u

2k+1
n+1 0 ≤ k < 2n,

and Kirchhoff’s law
ukn − u2k

n+1 − u2k+1
n+1 = 0.

External pressure (at root o) being set to 0, the generalized Poiseuille’s law across the tree takes the form of a
linear relation between pressures p = (pkN )0≤k<2N and fluxes u = (ukN )0≤k<2N

0− p = Ru,

and we aim at expressing how matrix R depends on the resistances.

1Edges are chosen oriented from root to leafs, i.e.

e2kn+1 = [xk
n, x

2k
n+1] , e2k+1

n+1 = [xk
n, x

2k+1
n+1 ].
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Figure 2. N -generation resistive tree

Resistance operator. Assume that end fluxes ukN , 0 ≤ k < 2N are known. Let us determine pressures along
the path from 0 to x0

N . Poiseuille’s law for the first edge (connecting o and x0
0) writes

0− p0
0 = r0

0u
0
0,

with

u0
0 =

2N−1∑
k=0

ukN

by mass conservation. At the next step

p0
0 − p0

1 = r0
1u

0
1,

where again u0
1 can be computed as the sum of end fluxes over the first half of indices. We obtain recursively

p0
2, p0

3, . . . , and finally

p0
N = −r0

0u
0
0 − r0

1u
0
1 − · · · − r0

Nu
0
N

= −
N∑
n=0

r0
n

2(N−n)−1∑
k=0

ukN

 .
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This approach can be generalized to a path connecting o to any endpoint xkN :

[o, x0
0, x

k1
1 , . . . , x

kn
n , . . . , xkN ],

which allows to express p = (pkN )0≤k<2N with respect to fluxes as

0− p = Ru,

where R is the resistance matrix, which is expressed below. Let Jn be the 2n× 2n matrix with all entries equal
to 1 (one-rank matrix), R writes

R = r0
0 JN +

(
r0
1 JN−1 0

0 r1
1 JN−1

)
+


r0
2 JN−2 0 0 0

0 r1
2 JN−2 0 0

0 0 r2
2 JN−2 0

0 0 0 r3
2 JN−2

+ . . . (16)

+



r0
N 0 . . . . . . 0

0 r1
N 0 . . .

...
...

. . .
...

...
. . .

...

0 . . . . . . 0 r2N−1
N


.

2.4. The resistance operator as a convolution

We introduced the resistance operator in a general setting at the end of Section 2.2, and in matrix form in
Section 2.3 for a dyadic tree. We show here that, in an appropriate framework, this operator actually is of the
convolution type, as soon as the considered tree is symmetric. We refer to [4] for a detailed description of this
framework, and its extension to infinite trees.

Consider a N -generation dyadic tree. Nodes of a given generation are indexed as shown in Fig. 3: starting
from the root, a right turn is encoded by 0, a left turn by 1. A node at generation N is represented by N bits:
aN−1aN−2 . . . a0. We map this N−bit number onto Z/2nZ in the following manner

aN−1aN−2 . . . a0 7−→
N−1∑
k=0

ak2k

considered as a element of Z/2NZ. This leads to an indexing of the boundary (set of leafs) ΓN of the N
generation 2-adic tree, that is more natural, as we shall see, than the linear indexing 0, 1, 2, . . . . For instance,
the indexing for N = 3 is the following: 0, 4, 2, 6, 1, 5, 3, 7. Now any a ∈ Z/2NZ can be written a = a′2p,
with a′ odd. We define p = p(a) ∈ [0, N − 1] as the valuation of a. The 2-adic absolute value of a is defined
as |a|2 = 2−p(a). The 2-adic distance between two vertices a and b of ΓN (identified to Z/2NZ) is then defined
as |b− a|2. This distance reflects the tree structure, in the sense that it is a monotone function of the graph-
distance between vertices, defined as the length of the shortest path (in the tree) connecting two vertices of ΓN .
In particular, the distance is minimal (1/2N−1) when 2 leafs share a direct ascendant, and maximal (equal to
1) when they belong to different halves (in the case where the shortest path goes up to the top of the tree).

In this setting, the resistance operator defined by (16) takes on a particular form. In order to emphasize the
convolution character of this operator, we shall use an integral formulation instead of a summation one. For a
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Figure 3. 2-adic indexing

function g in RΓN (that can be seen as a 2N dimensional vector), we shall write

∫
Z/2NZ

g(x) dx =
1

2N

2N−1∑
k=0

g(k),

in the spirit of Haar’s measure on Z2, the ring of 2-adic integers (see [4]). The underlying measure is such that
a set of the form z + 2

(
Z/2NZ

)
, has total measure 1/2. Similarly, the set z + 2p

(
Z/2NZ

)
has a measure 1/2p,

for p ≤ N , for any z.

Proposition 2.8. Consider a symmetric N -generation dyadic tree (i.e. the resistance is the same for all
branches of the same generation). The resistance operator defined in a general setting by Def. 2.6, and for
dyadic trees by the matrix (16), can be written

p(x) = Rq(x) =

∫
Z/2nZ

Ψ(x− y)q(y) dy. (17)

Proof. This is a direct consequence of the matrix expression (16), in the case where the resistance does not
depend on the branch within each generation, i.e. rkn ≡ rn. Consider for instance a flux vector that is 1 at 0,
and 0 at all other vertices . For all those vertices that are not in the same half than 0, the pressure is simply
r0. For all those that are in the same half, but not in the same quarter, the pressure is r0 + r1, etc. . . In the
2-adic setting it suffices to define Ψ by

Ψ : x ∈ Z/2NZ 7−→ Ψ(x) = r0 + r1 + · · ·+ rk, with k = − log2 (|x|2) ,

to obtain the expression (17). �
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2.5. Stochastic setting

We briefly describe here the links between the discrete Laplace problem and a stochastic process. Further
details about this setting can be found in [7]. This section is purely abstract in the sense that the random
walk that we will describe is not related to any actual process in the physical space, but it enlightens the
mathematical structure of the problem, and it can be used to compute equivalent resistances by a Monte Carlo
algorithm.

Considering a Network N = (V,E, r), we define a random walk by the transition probabilities πxy, where x
and y range over the set of vertices. This transition probability is defined as

πxy =
c(x, y)

C(x)
, C(x) =

∑
y∼x

c(x, y) , (18)

where c(x, y) = 1/r(x, y) is the conductance of edge (x, y). The probability to go from x to y is 0 as soon as
y is not connected to x. The corresponding Markov chain is irreducible as soon as the network is connected,
which we assume here.

Now consider a rooted network N = (V,E, r, o,Γ) and Dirichlet data on Γ: a collection of values (P (x))x∈Γ is
prescribed. We define p ∈ RV as follows: considering a vertex x ∈ V , we denote by i the step that corresponds
to the first hitting with Γ or o of the random walk starting from x:

X0 = x , X1, . . . , Xi ∈ Γ ∪ {o} ,

with Xj /∈ Γ ∪ {o} for 0 < j < i. The value of P at Xi (it is zero whenever Xi = o) is a random variable. We
denote by p(x) the corresponding expected value. We have the following link between this process and Dirichlet
Problem (11).

Proposition 2.9. Let p ∈ RV be defined as previously. Then p is the solution to Problem (11).

Proof. Let us first notice that Dirichlet boundary conditions are automatically verified (in the case x ∈ Γ∪{o},
the first hitting index i is 0). Now consider x ∈ V̊ . It holds

p(x) =
∑
y∼x

πxyp(y),

which can be written (from (18))

C(x)p(x)−
∑
y∼x

c(x, y)p(y) = 0,

so that p is harmonic. As a consequence, it is the unique solution to (11). �

This property can be used to obtain a stochastic expression of the resistance between o and Γ. Consider the
case where P ≡ 1. The field p defined previously is then the escape probability: for x ∈ V , it represents the
probability that the random walk starting from x hits Γ (i.e. “escapes”) before hitting Γ.

Proposition 2.10. Consider a random walk starting from o, transition probabilities given by (18). It holds

1

R
= C(o) pesc, (19)

where pesc is the probability that the random walk hits Γ before returning to o, and R the resistance between o
and Γ (see Def. 2.3).
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Proof. Let p be the solution to the Dirichlet problem (11). By Definition 2.3, the resistance R is 1/d(o). Now
by Prop. 2.9, the escape probability is

pesc =
∑
x∼o

πoxp(x) =
1

C(o)

∑
x∼o

c(o, x)(p(x)− p(o)) =
1

C(o)
du(o) =

1

C(o)

1

R
,

which yields the result. �

2.6. Actual computation of the equivalent resistance for a general dyadic tree

The actual computation of the equivalent resistance of a network is dictated by Def. 2.3. It amounts to
solving the discrete Dirichlet problem (11), with P ≡ 1, and then compute the resistance as R = 1/du(o). In
the case of a N -generation dyadic tree, an alternative approach can be undertaken, by means of the resistance

operator R, defined in matrix form by (16). Consider a unit pressure field p = (1, 1, . . . , 1) ∈ R2N

, solve

Rj = p,

and then compute the total flux as the sum of elements of j. The advantage is not obvious, since the straight
approach consists in solving a 2N+1 × 2N+1 system for a very sparse matrix (the maximal number of non-zero
entries in a row is 4), whereas the Neuman-Dirichlet approach that we propose here consists in solving a slightly
smaller linear system (2N × 2N ), but with a full matrix R. Yet, the particular structure of R, (see (16)), makes
it possible to design a fast matrix-vector product. We describe the idea of the method for the linear indexing
(that corresponds to the matrix expression (16)), but it could be also be formulated within the 2-adic setting
presented in Section 2.4. For a given flux field q, the matrix-vector product R requires the computations of
partial sums

q0 + q1 , q2 + q3 , q4 + q5, . . .

and then
q0 + q1 + q2 + q3 , q4 + q5 + q6 + q7, . . . etc

Once the 2-term sums have been computed, it is clear that each 4-term sum only requires a single addition
(and not 3). Recursively computing those sums to perform the matrix-vector product leads to a very efficient
algorithm. The linear system can then be solved by an iterative algorithm, like the conjugate gradient algorithm.
Note that a Monte Carlo method can also be undertaken in the spirit of Section 2.5, according to Formula (19).
This approach is less accurate than the direct one (described previously), but it can be useful in the case where
some individual resistances are very large. Indeed, the large condition number of the matrix is likely to harm
the convergence speed of any iterative method, while it will not affect the behavior of the Monte Carlo strategy.
We refer to [16] for a detailed comparison of both approaches, in various situations.

3. Optimality and stability issues

This section addresses natural questions concerning optimality and robustness of the lung as a resistive tree,
both from the standpoint of constrained optimization and from the statistical standpoint.

3.1. Minimizing the cost of breathing

There is an increasing number of research papers dedicated to optimality of physiological systems. We must
stress out that the answer to the question:

Is the system optimal ?

strongly depends upon the meaning that is given to optimality, and upon the constraints that are accounted
for in setting optimization problems. Having said that, it is to be expected that the evolutionary process has
favored shapes and structures that provide some efficiency to the overall system. As for the ventilation process,
if we consider as given that it aims at renewing alveolar air to improve passive diffusion by maintaining a
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required tidal volume (see Section 1), an obvious criterium is the energy cost. A first attempt in this direction
was proposed in [13].

The authors consider a N -generation dyadic tree that is assumed to be symmetric. They furthermore assume
that all branches over the tree have the same aspect ratio: if `n is the length at generation n, the diameter is
c`n, so that the individual resistance of a branch linearly depends on 1/`3n, see Eq. (9). To alleviate notations,
we shall consider that the resistance of a pipe at generation n is simply rn = 1/`3n (we drop the multiplicative
constant). Similarly, each branch at generation n occupies a volume `3n. For a unit flow rate, the dissipated
power reduces to the global resistance (see Prop. 2.4), that is

P = R =

N∑
n=0

1

2n `3n
.

whereas the total volume is

V =

N∑
n=0

2n `3n.

Considering that the volume is subject to remain below a maximal value, minimization of the resistance under
this constraint can be solved exactly.

Proposition 3.1. (From [13])
Under the previous assumptions, minimality of R under the maximal volume constraint is achieved for a geo-
metric progression of the sizes, i.e.

`n = βλn , with λ = 2−1/3,

where β is a normalization constant which ensures that the volume constrained is saturated.

Proof. This is a straightforward application of the Kuhn-Tucker necessary conditions for optimality under
constraint. �

This academic result is quite striking, since it can be assessed from actual measurements (see [24], or Table 1
taken from [23]) that the progression is indeed not far from being geometric, at least in the central range of
generations (i.e. from 3 to 16). Furthermore, the measured value, that is 0.85, is quite close to the “ideal” one
2−1/3 ≈ 0.79. We refer the reader to [13] for further discussions on the gap between the two values.

Note that the constrained optimization can be set in a different manner, by disregarding the maximal volume
constraint, and replacing it by a constraint based on lengths. Assuming that the entrance of the respiratory
system is necessary at a prescribed distance of the zone it is meant to irrigate, we may consider that the length
of any path from the root to the leaf is fixed, i.e.

`tot =

N∑
n=0

`n

is prescribed. It can be shown with similar arguments (see [16]) that the optimum still exhibits a geometric

character, with a ratio 1/ 4
√

2 ≈ 0.84 that is even closer to the experimental one.
We shall end this section by a very simple and general property of resistive networks, that concerns the

control of the flux by external pressures. As for the lung, the question can be formulated as: would it be
significantly more efficient to have a better control of the pressure field at the leafs of the trees (i.e. at the level
of alveoli)? As we know, the basic control of the ventilation is quite poor, it relies on a single action, that is
the contraction of the diaphragm. In a more academic way, it can be formulated as follows: Consider a rooted
network N = (V,E, r, o,Γ) (see Def. 2.2) that carries a unit flux through its root, what is the pressure field on
Γ that ensures minimalty of the dissipated energy. As stated in the following proposition, the corresponding
field is uniform.
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Proposition 3.2. Among all those pressure fields on V that vanish at o, harmonic over the set of interior
vertices V̊ = V \ ({o} ∪ Γ), and driving a unit flux through o (or, equivalently, the opposite flux through Γ), the
one that minimizes the dissipated energy is uniform over Γ.

Proof. Let us denote by H the set of pressure fields that vanish at 0. The problem consists in minimizing

1

2

∑
e∈E

c(x, y) (p(x)− p(y))
2
.

over {
q ∈ H1

0 , dcd
?q(o) = 1

}
, with H1

0 =
{
q ∈ RV , q(o) = 0.

}
By global conservation (see (14)), the flux constraint can be written (with u = −cd?q)

1 = dcd?q(o) = −du(o) = +
∑
x∈Γ

du(x) = −
∑
x∈Γ

dcd?p(x).

The problem can be set as a saddle point-problem (see e.g. [6]): it amounts to find a couple (p, λ) ∈ H1
0 that is

a saddle-point for the Lagrangian

L(q, µ) =
1

2

∑
e∈E

c(x, y) (q(x)− q(y))
2

+ λ

(∑
x∈Γ

dcd?q(x) + 1

)

The optimality conditions for the primal component write in a variational way as∑
e∈E

c(x, y) (p(x)− p(y)) (q(x)− q(y)) + λ
∑
x∈Γ

dcd?q(x) = 0 ∀q ∈ H1
0 , harmonic on V̊ .

Applying properly the discrete Green formula (13) to the first term, we obtain∑
x∈V̊

p(x) dcd?q(x) +
∑
x∈Γ

p(x) dcd?q(x) + λ
∑
x∈Γ

dcd?q(x) = 0 ∀q ∈ H1
0 .

Now for any collection of fluxes j ∈ RΓ (extended by 0 for vertices in V̊ ), we may consider the solution q ∈ H1
0

to

dcd?q(x) = j(x) ∀x ∈ V̊ ∪ Γ.

Plugging this very field in the variational formulation above leads to∑
x∈Γ

(p(x) + λ)j(x) = 0.

Since j can be chosen arbitrarily, it implies that p ≡ −λ on Γ, hence the pressure field is uniform.
�

3.2. Resistance dispersion and generation-wise Sobol sensitivity indices

We consider the respiratory tract as an N -generation dyadic tree. According to the previous considerations,
the global resistanceR depends (in a highly complex way) upon geometric characteristics (lengths and diameters)
of all branches. Morphometric data can be found in the literature (see e.g. [23,24]). Table 1 is taken from [23],
it gives the mean lengths and diameters for the typical respiratory tract of an adult subject.
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Table 1. Lengths and diameters, with relative variations (from [23])

Generation Length (mm) σ/m Diam. (mm) σ/m
0 105 0.1 15.7 0.1
1 41.6 0.15 10.1 0.1
2 16.6 0.25 7.3 0.125
3 6.6 0.3 4.9 0.175
4 11.1 0.35 3.9 0.2
5 9.4 0.425 3.1 0.23
6 7.9 0.5 2.5 0.275
7 6.7 0.575 2.0 0.325
8 5.6 0.65 1.6 0.35
9 4.7 0.70 1.35 0.42
10 4.0 0.75 1.14 0.5
11 3.4 0.80 0.95 0.575
12 2.9 0.81 0.83 0.66
13 2.4 0.775 0.72 0.675
14 2.0 0.725 0.65 0.6
15 1.7 0.65 0.58 0.5

Beside mean values, the table indicates coefficients of variation. Those are defined as the dimensionless ratio
of standard deviation and mean value. They progress along the tree from small values (about 10 %) to much
higher values (about 80 % for generations 11 and 12). The variability that can be induced for the resistance
of individual branches is huge. Consider for exemple a branch at generation 10, assume that its diameter and
its length are (independent) random variables that follow a log-normal law, with mean values and standard
deviations given by Table 1. The corresponding resistance can be considered as a random variable. The mean
and the standard deviation can be estimated as

r10 = 222 cm H2O s L−1 , σ10 ≈ 1400cm H2O s L−1.

Note that the mean value is more than 100 times the resistance of the overall tree. Furthermore, the coefficient
of variation of the individual resistance is about 600 %. We aim here at investigating the real effect of this huge
individual variability upon the global resistance.

We denote by Xn the vector of lengths and diameters of the 2n branches of generation n:

Xn = (`0n, `
1
n, . . . , `

2n−1
n , d0

n, d
1
n, . . . , d

2n−1
n ).

The global resistance R can be written as a function of the geometric characteristics (lengths and diameters)
of all branches, i.e.

R = R(X0, X1, X2, . . . , XN ).

Following [23], we now assume that all diameters and lengths are independent random variables, so that R is
itself a random variable. Table 1 gives experimental values for the lengths and diameters of the branches over
the generation range, together with associated coefficients of variation (dimensionless number, defined as the
standard deviation divided by the mean value). Following [23] again, we shall consider each geometric parameter
follows a log-normal distribution. Let us consider one of those variables (length or diameter at some generation
n), denoted by X, with mean m and standard deviation σ. It consists in writing

X = eY , Y ∼ N (µ, τ),
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where N is a normal law with mean µ and standard deviation τ , with

µ = log

(
m√

1 + σ2/m2

)
, τ =

√
log

(
1 +

σ2

m2

)
.

We shall therefore consider that all geometric quantities `kn and dkn follow such laws, the parameters of which
only depends on generation index n, and that all random variables are independent.

Actual computation of equivalent resistances associated to randomly generated trees can be performed (see
section 2.6), and Fig. 4 shows the obtained histogram (with 30000 samples). Two remarks are in order. First,
the mean value (0.47 cm H2O s L−1) is significantly higher that the value computed for the symmetric tree,
with the mean values given by Table 1 (0.28 cm H2O s L−1). Second, the distribution is narrow: the standard
deviation is 0.02, that is about 4% of the mean value. This asserts the strong robustness of the tree resistance
with respect to the variability of constitutive parameters.

Remark 3.3. The previous computations are based on log-normal distributions for the lengths and diame-
ters. Another natural choice in such a situation is the Gamma-distribution. In the present context, similar
computations based on this alternative choice lead to a value of R = 0.51 ±0.03 cm H2O s L−1.
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We now aim at quantifying the role played by the variability within each generation upon the global variability
of the resistance, by means of Sobol sensitivity indices (see e.g. [22]). In this spirit, for any n, any Xn, we define
Rn(Xn) as

Rn(Xn) = E(R(X)|Xn).

This quantity is a random variable that depends on Xn only. We denote by σ2
n its variance. The n−th Sobol

index is then defined as

Sn =
σ2
n

σ2
,

where σ is the standard deviation of R. This dimensionless index Sn, between 0 and 1, quantifies the part of
the global variance that is explained by generation n.

Estimation of Sn. For any generation n, the index Sn can be estimated by means of a Monte Carlo algorithm.
It is based on generating samplings of the full vector of parameters

X = (X0, X1, . . . , Xn−1, Xn, Xn+1, . . . , XN ),

together with samplings of

X ′ = (X ′0, X
′
1, . . . , X

′
n−1, Xn, X

′
n+1, . . . , X

′
N ).

It holds

Sn =
cov(R,R′)

var(R)
, with R = R(X) , R′ = R(X ′).

Let R1, R2, . . . , R′1, R′2, . . . be the sampled values. The Monte Carlo approach is then based on the following
estimator (see [10]):

Ŝn =

1
K

∑K
k=1Rk R

′
k −

(
1
K

∑K
k=1Rk

)(
1
K

∑K
k=1R

′
k

)
1
K

∑K
k=1 (Rk)

2 −
(

1
K

∑K
k=1Rk

)2 .

The results are presented in Fig. 5, for K = 10000 samples for each generation. The standard deviations
for each index (represented in the figure) is estimated by bootstrapping (random sampling with replacement
from the same sample set of values for R, R′). It appears that the largest part of the variability is due to the
proximal generations (generations 0 to 8), whereas further (distal) generations play essentially no role in this
variability. Another striking fact is the balanced distribution of indices in the proximal part: they vary between
0.05 and 0.15. It suggests that evolutionary principles might tend to equi-distribute variability contributions in
some complex systems like the respiratory tract.

4. Conclusion

Starting from the Top-Down (or functionalist) notion of resistance as a single scalar that can be measured
from the outside, we described here frameworks that have been elaborated to properly define such a notion
at a mathematical level. This approach makes it possible to handle the whole geometric complexity of the
respiratory tract. We acknowledge the apparent futility in the process: considering a living subject, a full
and accurate knowledge of geometric characteristics of his/her respiratory tract is clearly out of reach. Yet,
computing equivalent resistances for general (i.e. non-symmetric) trees makes it possible to investigate the effect
of microscopic variability (at the level of individual branches) over the global resistance. The main outcomes of
these direct computations are

(1) The variability of individual branch characteristics has a significant effect upon the mean value of
the effective resistance. As we pointed out in Section 3.2, the effective mean value is about twice the
resistance computed from the mean geometric parameters.

(2) On the other hand, the high variability of local parameters does not induce a wide dispersion of the
resistance values. The effective resistance distribution is very narrow (mean value ± 5%).
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(3) As for the respective contributions of the branches upon the global variability, Sobol analysis exhibits
two distinct zones: a proximal one (branches 0 to 7 or 8), in which the contribution to global variability is
fairly uniformly distributed over generations, and a distal one (generation 9 and above), that corresponds
to generations which do not significantly contribute to variability.

All these arguments tend to support the relevance of the resistance as a lumped parameter. The respiratory
tract as a resisitive network remains a complex system, but this complexity is in someway smoothed by nonlinear
interactions between parameters, and the tree structure provides a great robustness to the overall process.

References

[1] A. Ben-Tal, Simplified models for gas exchange in the human lungs, J. Theor. Biol. 238 (2006), 474–495.

[2] R. Carlson, Myopic models of population dynamics on infinite networks, Networks And Heterogenous Media , Volume 9,
Number 3, September 2014.

[3] J.E. Cotes, D.J. Chinn, M.R. Miller, Lung Function, Blackwell 2006.

[4] F. Bernicot, B. Maury, D. Salort, A 2-adic approach of the human respiratory tree, Netw. Heterog. Media 5 (2010), no. 3,
405–422.

[5] S.-Y. Chung, Y.-S. Chung, J.-H. Kim, Diffusion and Elastic Equations on Networks, Publ. RIMS, Kyoto Univ. 43 (2007),

699?726.
[6] P.G. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation, Cambridge Texts in Applied Mathematics (Book

4), Cambridge University Press (1989).

[7] P. Doyle, J. L. Snell, Random Walks and Electric Networks, Mathematical Association of America, 1984.
[8] C. Grandmont, B. Maury and N. Meunier, A viscoelastic model with non-local damping application to the human lungs, ESAIM

: M2AN, 40(1):201-224, January 2006.



96 ESAIM: PROCEEDINGS AND SURVEYS

[9] R.H. Ingram, T.J. Pedley, Pressure-flow relationship in the Lungs, in Comprehensive Physiology, supplement 12: Handbook
of Physiology, The respiratory system, mechanics of breathing, 2011, 277-293.

[10] A. Janon, T. Klein, A. Lagnoux, M. Nodet, C. Prieur, Asymptotic normality and efficiency of two Sobol index estimators,

2012. Accepted in ESAIM: Probability and Statistics.
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