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Abstract. In this work, we discuss the modelling of transport in Langevin probability density function
(PDF) models used to predict turbulent flows [1]. Our focus is on the diffusion limit of these models,
i.e. when advection and dissipation are the only active physical processes. In this limit, we show that
Langevin PDF models allow for an asymptotic expansion in terms of the ratio of the integral length to
the mean gradient length. The main contribution of this expansion yields an evolution of the turbulent
kinetic energy equivalent to that given by a k− ε model. In particular, the transport of kinetic energy
is given by a gradient diffusion term. Interestingly, the identification between PDF and k − ε models
raises a number of questions concerning the way turbulent transport is closed in PDF models. In order
to validate the asymptotic solution, several numerical simulations are performed, with a Monte Carlo
solver and also with a deterministic code.

Résumé. Dans cet article, nous abordons la question de la modélisation du transport turbulent dans
les modèles de turbulence basés sur les fonctions de densité de probabilité (PDF). Nous étudions la
limite diffusive de ces modèles obtenue lorsque l’advection et la dissipation sont les seuls processus
physiques actifs. Dans cette limite, nous montrons que les modèles PDF donnent lieu à un développe-
ment asymptotique selon un petit paramètre correspondant au rapport de l’échelle intégrale sur l’échelle
du gradient moyen. La contribution principale de ce développement s’identifie avec un modèle k − ε

classique. En particulier, le transport de l’énergie turbulente est donné par une diffusion en premier
gradient. L’identification entre modèle k− ε et modèle PDF permet de soulever un certain nombre de
questions sur la manière dont le transport est modélisé dans les approches PDF. La solution asymp-
totique est validée par des simulations numériques réalisées à l’aide d’un code Monte Carlo mais aussi
d’un code déterministe.

1. Introduction

Since the early work of Pope [1], the so-called probability density function (PDF) approach has proved to be
an efficient tool for predicting turbulent flows. In this approach, one derives and solves a modelled transport
equation for the one-point PDF of the fluctuating velocity field and, when necessary, of additional variables
describing the state of the flow, such as concentration, temperature or density. In the modelling process of the
flow one-point statistics, closures must be applied to the turbulent acceleration as well as to molecular diffusion
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terms. Most of these closures yield a PDF transport equation of the Langevin type [1–4]. In this work, we will
only focus on this class of models.

While mostly used to predict turbulent reactive flows, the PDF approach has also demonstrated its utility for
solving incompressible inert flows. In this context, Langevin PDF models have been shown [2] to be connected
to simpler turbulent models which focus solely on the second-order one-point correlation tensor of the velocity
field, also called Reynolds stress tensor. These Reynolds stress models (RSM) revert to the well known k − ε
model when turbulence is isotropic. The PDF/RSM equivalence encompasses most physical processes at work
in incompressible flows, including production, non-linear redistribution and dissipation effects. However, strong
differences exist in the way both approaches deal with the transport of the turbulent kinetic energy and of its
anisotropy.

In RSM, turbulent transport is usually modelled by a gradient diffusion assumption. Many variants of this
closure exist, but most are found to yield similar results in practical situations [5, 6]. In the PDF approach,
the situation is different. The advection term appearing in the Navier-Stokes equations does not require any
closure. In that sense, turbulent advection is often said to be treated “exactly” or “without assumption” [4, 7].
However, such statements might be somewhat misleading. Indeed, the overall process of turbulent transport is
not exact since the statistics of the velocity field are affected by the Langevin closures used in the remaining
parts of the PDF transport equation.

Thus, turbulent transport and Langevin closures are interacting in PDF models. This interaction is flow-
dependent and cannot be made explicit in the general case. Yet, when non-equilibrium/production effects
become negligible, the PDF equation is expected to degenerate and to yield a gradient diffusion formulation for
the transport of Reynolds stresses. This is suggested by several works, for instance [2,5,8], which focus on triple
velocity correlations and on their expression in the absence of production. As a consequence, in this diffusion
limit, a PDF/RSM equivalence should exist for the turbulent transport term. Then, significant knowledge could
be gained by comparing the two families of models, just as it was done in the homogeneous case by Pope [2].

However, the diffusion limit of PDF models has never been looked at thoroughly. The precise conditions
under which it occurs have not been made explicit. Besides, the influence of dissipation processes are usually
discarded while they are expected to play a significant role. Finally and more importantly, the study of the
diffusion limit has been limited to considerations on the sole triple velocity correlations and not on the PDF
itself.

Thus, the purpose of this work is to study the diffusion limit of PDF Langevin models and to explicit the
connection with RSM models in that particular case. To this end, we consider a simplified setting in which
diffusion and dissipation are the only active physical mechanisms. Besides, we restrict our attention to the
simplified Langevin model described for instance in [3]. Then, we look for an asymptotic expansion of the
Eulerian Langevin PDF equation in terms of the ratio of the integral length to the mean gradient length. The
relevance of this expansion is verified on several simulations. Finally, its implications in terms of physical models
are discussed.

2. Simplified Langevin PDF model applied to a turbulent zone

Throughout this work, we will consider a canonical turbulent flow consisting in a 1D slab of turbulence that
decays and diffuses with time, and has no mean velocity. This flow is sketched in Figure 1 and will be referred
to as turbulent zone (TZ). The inhomogeneous direction is denoted by x1 and the length of the TZ by LTZ .
Our interest lies in finding the properties of the Eulerian PDF f(u;x1, t) of the velocity field u = (u1, u2, u3)
at point x1 and time t when modelled by the simplified Langevin model (SLM) [1]. The PDF f is defined as:

f(u;x1, t) = δ(v(x, t)− u) ,

where v(x, t) is the instantaneous value of the velocity field, δ is the Dirac delta function and where, for any
quantity a, a represents the averaging operator. Note that the PDF f depends on x1 instead of x because of
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Figure 1. Sketch of a turbulent zone as studied in this work.

the assumed statistical homogeneity of the flow in the directions x2 and x3. In the TZ configuration and with
the SLM, the evolution of f is given by:

∂f

∂t
+ u1

∂f

∂x1
= − ∂

∂uj

[(
∂R1j

∂x1
− C1

2
ωuj

)
f

]
+

C0

2
ε

∂2f

∂uj∂uj
, (2.1)

where C0 and C1 are model constants, Rij = uiuj is the Reynolds stress tensor, k is the mean turbulent kinetic
energy, ω is the mean dissipation frequency and ε is the mean dissipation rate. Note the presence of the gradient
of the Reynolds stress tensor in the right-hand side of Equation (2.1). This is due to the fact that the mean
velocity is null and that the first moment of f is zero:

∫
uif(u;x1, t)du = 0 (see eq. (12.19) in [3]). The

Reynolds stress tensor Rij and k are obtained directly from the PDF by the relations:

k(x1, t) =
1

2
Rii(x1, t) =

1

2
uiui(x1, t) and Rij(x1, t) = uiuj(x1, t) =

∫

R3

uiujf(u;x1, t)du . (2.2)

In these expressions, the Einstein summation convention on indices is used. The mean dissipation rate and
mean frequency are linked by the relation:

ω(x1, t) =
ε(x1, t)

k(x1, t)
. (2.3)

An additional equation for the dissipation is required to close the system. As in standard k − ε models, this
equation is obtained by direct analogy with the equation of k. The evolution of k deduced from the PDF
equation (2.1) is:

∂k

∂t
+

∂

∂x1

(
u1k
)
= −ε . (2.4)

The evolution of ε is then set to:

∂ε

∂t
+

∂

∂x1

(
Cεω u1k

)
= −Cε2ω ε , (2.5)

where Cε and Cε2 are model constants and where uik is the following triple velocity correlation:

uik =
1

2
uiupup .
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The values of the different constants appearing in the above equations are given in table 1. These values are
taken from the literature [1–4].

C0 C1 Cε Cε2
2
3 (C1 − 1) [1.5, 5] 1 1.9
Table 1. Model constants

Note that C0 and C1 are not independent: in order to ensure that ε is the dissipation rate of k one must have
C0 = 2

3 (C1 − 1). As noted in [2], the value of C1 varies significantly in the literature. It mostly depends on
whether the SLM is used to model both the non-linear redistribution of energy and the rapid contribution of
the pressure gradient, or whether it is associated with an additional component modelling the rapid pressure
part. In the former case, the value of C1 is usually set to higher values, typically C1 = 4.15. In the latter case,
it is set to lower values, typically C1 = 1.8. In the absence of production, as in the TZ case considered here,
there is no rapid pressure term and both low and high values of C1 are acceptable.

3. Weakly inhomogeneous limit and diffusion regime

3.1. Main assumption

Two main lengths characterize the turbulent field in the TZ configuration, the integral length ℓ and the
gradient length L. They are respectively defined as:

ℓ =
k
3/2

ε
and L =

[
1

k

∂k

∂x1

]−1

.

The integral length ℓ is representative of the size of the turbulent eddies present in the turbulent zone, while L
measures the inhomogeneity of the turbulent field. Its maximum is expected to be roughly on the order of the
turbulent zone size LTZ .

We now make the assumption that the flow is weakly inhomogeneous, i.e. that turbulent eddies are much
smaller than L. More precisely, we assume that:

ℓ

L
≤ ǫa ≪ 1 , (3.1)

where ǫa is a constant. Anticipating on a configuration where the PDF remains close to a Gaussian, this
assumption can be incorporated in Equations (2.1) and (2.5) by introducing a rescaled spatial coordinate:

z =
x1

ǫa
.

With this definition, Equations (2.1) and (2.5) can be rewritten as:

∂f

∂t
+ ǫau1

∂f

∂z
= − ∂

∂uj

[(
ǫa

∂R1j

∂z
− C1

2
ωuj

)
f

]
+

C0

2
ε

∂2f

∂uj∂uj
, (3.2)

∂ε

∂t
+ ǫa

∂

∂z

(
Cεω u1k

)
= −Cε2ω ε . (3.3)
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3.2. Asymptotic expansion

We look for a solution of Equations (3.2) and (3.3) as an expansion of the small parameter ǫa:

f =f (0) + ǫaf
(1) + ǫ2af

(2) + ... , (3.4)

ε =ε(0) + ǫaε
(1) + ǫ2aε

(2) + ... , (3.5)

where we impose

∫

R3

f (0)(u; z, t)du = 1 and ∀i ≥ 1,

∫

R3

f (i)(u; z, t)du = 0, without loss of generality. The zeroth

order of the expansion for f obeys the following Fokker-Planck equation:

∂f (0)

∂t
=

∂

∂uj

[
C1

2
ω(0)ujf

(0)

]
+

C0

2
ε(0)

∂2f (0)

∂uj∂uj

with ω(0) = ε(0)/k(0). Besides, the zeroth order kinetic energy and its dissipation evolve according to:

∂k
(0)

∂t
= −ε(0) ,

∂ε(0)

∂t
= −Cε2

ε(0)
2

k
(0)

.

From these equations, it can be shown that the long-time solution of the PDF f (0) is an isotropic Gaussian of

variance σ2 = 2k
(0)

/3. We hereafter assume that time is large enough so that this long-time solution is reached.
Equivalently, we can assume that the initial condition of f is an isotropic Gaussian and that we look at the
development of a perturbation around this initial state. In either case, we hereafter consider that:

f (0)(u; z, t) =
e−

uiui
2σ2

(2πσ2)3/2
with σ2 =

2

3
k
(0)

.

The derivation of the first order of the expansion is detailed in appendix A. The central result is that, for large
times, f (1) takes the following form:

f (1) = Cg
σ

ω

∂zσ
2

σ2

u1

σ

(
5− uiui

σ2

)
f (0) with Cg =

1

3C1 + 2Cε2 − 6
. (3.6)

The first order perturbation f (1) does not contribute to the Reynolds stresses:

uiuj
(1) = 0 .

However, it yields the main contribution to the third order moments. From the previous formula, one has:

uiujuk
(1) = −2Cg

σ2

ω

∂σ2

∂z
(δ1iδjk + δ1jδik + δ1kδij) . (3.7)

In particular, the flux of kinetic energy is given by:

uik
(1)

= −5Cg
σ2

ω

∂σ2

∂z
δi1 . (3.8)

The second order is not detailed here. It yields an anisotropic contribution to the Reynolds stresses and an even
contribution to the PDF, with a dependency on the gradient of σ2 and on its Laplacian.
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3.3. Main result: approximate PDF solution in the weakly inhomogeneous regime

3.3.1. Main result

We now collect the zeroth and first orders of the expansion. Besides, we also go back to the original spatial
coordinate x1 = ǫaz. Then, we obtain that:

For
ℓ

L
≪ 1 , f(u;x1, t) =


1 +

√
2/3Cg ℓ

1

k

∂k

∂x1

u1√
2k/3

(
5− uiui

2k/3

)
 e−uiui/(4k/3)

(4πk/3)3/2
, (3.9)

where k is solution of a k − ε-like system:

For
ℓ

L
≪ 1 ,

∂k

∂t
=

∂

∂x1

(
Ck

k
2

ε

∂k

∂x1

)
− ε , (3.10)

∂ε

∂t
=

∂

∂x1

(
CεCk

k
2

ε

(
∂ε

∂x1
− k

∂ω

∂x1

))
− Cε2ω ε , (3.11)

with:

Ck =
20

9
Cg =

20

9 (3C1 + 2Cε2 − 6)
.

To obtain these expressions, we used the relations ℓ = k
3/2
/ε =

√
3/2 σ/ω and σ2 = 2k/3. We also injected relation

(3.8) into the evolution Equations (2.4)-(2.5) of k and ε.
Equations (3.9)-(3.11) are the main result of this work. They show that, in the weakly inhomogeneous regime,

the simplified Langevin PDF model behaves as a standard k − ε model. In particular, turbulent transport is
given on first order by a diffusion term which coefficient depends explicitly on two model constants: C1 and
Cε2 . The physical implications of this finding will be discussed in section 5.

3.3.2. Comment on the domain of validity of the main result

The asymptotic expansion of the PDF eq. (3.9) and the ensuing k − ε system (3.10)-(3.11) are valid in
weakly inhomogeneous turbulence, i.e. for ℓ/L ≪ 1. Let us assume that this condition is indeed verified on
the whole spatial domain. Then, when Cε = 1, the k − ε system (3.10)-(3.11) admits a self-similar solution,
first found by Barenblatt & co-workers [9] and later by Cherfils & Harrison [10]. This solution is reached for
asymptotically large times for arbitrary initial conditions. For initial conditions that are compatible with the
self-similar solution, the self-similar regime is immediately reached. It is given by:

k(x1, t) = k0 (1 + t/τ0)
−2+2β

(
1− [x1/Λ(t)]

2
)

, ε(x1, t) = ε0 (1 + t/τ0)
−3+2β

(
1− [x1/Λ(t)]

2
)

, (3.12a)

with Λ(t) = Λ0 (1 + t/τ0)
β

and β =
2Cε2 − 3

3(Cε2 − 1)
. (3.12b)

The values of k and ε at t = 0 and x1 = 0 are related to the two free parameters defining the initial length of
the profile Λ0 and the initial turbulent time τ0:

τ0 =
1

Cε2 − 1

k0
ε0

, Λ0 =

√
2Ck

β(Cε2 − 1)

k
3/2

0

ε0
. (3.13)
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From this analytical solution, we can compute the small parameter on which the asymptotic expansion is based:

ℓ/L = (k
3/2

/ε)(∂x1
k/k). We find that:

ℓ

L
=
√

2β(Cε2 − 1)/Ck

x1/Λ√
1− (x1/Λ)2

.

This ratio is equal to 0 at the center of the mixing zone and grows to infinity at the edges of the mixing zone.
The condition ℓ/L ≪ 1 is met only for:

|x1|
Λ

≪ x10

Λ
=

1√
1 + 2β(Cε2 − 1)/Ck

,

where the value of x10/Λ is on the order of 1.
As a result, we deduce that the initial hypothesis of this reasoning, according to which the weakly inhomo-

geneous limit ℓ/L ≪ 1 is met on the whole spatial domain, cannot be fulfilled. Because of this, differences
will exist between the solution of the actual f and ε equations (2.1)-(2.5) and the solution of the approximate
system (3.9)-(3.11), when applied to the whole domain, instead of being restricted to is domain of validity.

The question that follows is whether these differences will affect significantly the overall dynamical evolution
of the mixing zone or not. In particular, it is important to know whether the evolution of k and ε obtained from
the initial equations (2.1)-(2.5) differs substantially or not from the evolution of the approximate k-ε model
(3.10)-(3.11) applied to the whole domain. If the two remain close, the weakly inhomogeneous asymptotic
expansion will not only yield a local approximation of the PDF and its moments, but also provide a global
approximation of the evolution of the mixing zone.

The answer to these questions cannot be determined beforehand with the present analysis. Instead, numerical
simulations are performed in the next section to give elements of discussion.

4. Numerical simulations

The purpose of the simulations is two-fold. First, when the parameter for the asymptotic expansion is small
(eq. (3.1)), we want to corroborate numerically the analytical asymptotic expansion of the PDF (eq. (3.9)).
Second, we would like to check whether or not the actual evolution of the mixing zone given by Equations (2.1)
and (2.5) remains close to the approximate evolution given by System (3.9)-(3.11). Indeed, as noted in section
3.3.2, the weakly inhomogeneous condition (3.1) and the ensuing approximation (3.9)-(3.11) cannot apply on
the whole spatial domain, but fail close to the mixing zone edges.

To achieve those objectives, we propose two types of numerical reference solutions for the PDF equations
(2.1) and (2.5). On the one hand, we consider a Eulerian Monte Carlo (EMC) solver. EMC methods have
been introduced for scalar PDFs in [11, 12] and have been extended to include the velocity field in [13]. They
are described in appendix B. On the other hand, we use a direct deterministic solver based on finite volume
approximations, described in appendix C. Given the high number of dimensions of Equation (2.1), the compu-
tational cost of a deterministic method is too expensive. Hence, we decide to apply the deterministic method
to a simplified version of Equations (2.1) and (2.5). This simplified system is described in section 4.2.

In all simulations, we will restrict our attention to the case Cǫ = 1 which allows for the analytical solution
(3.12).

4.1. Eulerian Monte Carlo simulations

First, we solve Equations (2.1) and (2.5) with the Eulerian Monte Carlo (EMC) solver which principle
is detailed in appendix B. The parameters of the simulation are the following. The computational domain
[xmin, xmax] is set to [−80, 80]. It is discretized with Nx = 256 points. The number of stochastic fields is set to
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Nf = 16000. The initial conditions are set according to the expected solution (3.12):

k(x1, t = 0) = k0

(
1−

[
x1

Λ0

]2)
, ε(x1, t = 0) = ε0

(
1−

[
x1

Λ0

]2)
,

where we set the values Λ0 = 10 and k0 = 1.5 and where the values of τ0 and ε0 are given by Formula (3.13).
Two calculations are done: one with C1 = 4.15 and one with C1 = 1.8. For C1 = 1.8, one has τ0 = 2.0 and
ε0 = 0.84 and for C1 = 4.15, one has τ0 = 3.6 and ε0 = 0.47.

4.1.1. Validity of the asymptotic expansion

The first point we examine is whether the validity conditions of the asymptotic expansion are met and, if it is
the case, whether the asymptotic expansion is indeed obtained. Figure 2 shows the profiles of ℓ/L at t/τ0 = 10.
It can be seen that this ratio is ℓ/L = O(1) at 1/2 . x/Lk(t) . 1, and falls close to zero at x/Lk(t) = 0. It can
also be seen that ℓ/L slowly goes back to zero at the edges of the mixing zone for ℓ/Lk(t) ≥ 1. The length Lk

is defined as:

Lk(t) =
3

4

∫
k(x1, t)dx1

maxx1∈R

(
k(x1, t)

) .

It is equal to Λ(t) when k and ε obey the self-similar solution (3.12). While other definitions are possible, we
will hereafter consider that Lk defines the size of the mixing zone: LTZ = Lk.
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(b) C1 = 4.15

Figure 2. ℓ/L as a function of x1/Lk at time t/τ0 = 10

The estimate of the PDF obtained from the EMC code is too noisy to be compared directly to the analytical
form (3.9). Direct comparisons will be made with the deterministic code. However, we can compare predicted
and computed moments. In particular, Figure 3 shows a comparison of the third order moment u1k against its
predicted value given by Equation (3.8). More precisely, Figure 3 shows the quantity:

∆F =

∣∣∣u1k + Ck
k
2

ε
∂k
∂x1

∣∣∣

k
3/2

The main observation is that predicted and computed third order moments are close to one another in the
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Figure 3. ∆F as a function of x1/Lk at time t/τ0 = 10

central part of the mixing zone, approximately for |x1|/Lk ≤ 0.5. Their difference is maximum for |x1|/Lk ≈ 1
and decreases slowly beyond this point. These observations are in agreement with the expected domain of
validity of the asymptotic expansion, as commented from Figure 2.

4.1.2. Evolution of the mixing zone

We now turn our attention to the question asked at the end of section 3.3.2: whether the evolution of k and
ε differs substantially or not from the analytical prediction (3.12). To do so, we first assess the self-similarity of
the solution. In addition to Lk, we introduce the following two parameters:

kmax(t) = max
x1∈R

(
k(x1, t)

)
, εmax(t) = max

x1∈R

(ε(x1, t)) .

We first consider the time evolutions of the three parameters kmax(t), εmax(t) and Lk(t) and compare them
against their predicted values given by the self-similar solution (3.12). To this end, we introduce the three ratios
Rk, Rε and RL defined by:

Rk =
kmax

k0 (1 + t/τ0)
−2+2β

, Rε =
εmax

ε0 (1 + t/τ0)
−3+2β

, RL =
Lk

Λ0 (1 + t/τ0)
β
.

If the solution remains close to the self-similar solution (3.12), then Rk, Rε and RL should become independent
of time. Besides, given that the initial condition was chosen close to a self-similar solution, one should have
Rk = Rε = RL ≈ 1. A strict equality is not expected since the asymptotic expansion is not valid on the whole
domain and since the initial condition is not fully coherent with the self-similar state. In particular, the initial
PDF is a Gaussian, whereas the self-similar PDF deviates from Gaussianity.

The three ratios Rk, Rε and RL are displayed in Figure 4. It can be seen that they indeed remain ap-
proximately constant and stay close to one for the two simulations respectively performed with C1 = 1.8 and
C1 = 4.15.

We now consider the ratio k/kmax taken at different times is displayed in Figure 5 as a function of x1/Lk and
for two values of C1. It can be seen that the respective profiles of the two ratios fall approximately on a single
curve. This indicates that k is close to a self-similar state. Besides, the collapsed curves remain close to parabolas
as predicted by solution (3.12). The main difference with this solution occurs at the edges of the turbulent zone
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Figure 4. Evolution of Rk, Rε and RL as a function of time.

: while Equation (3.12) predicts a compactly supported turbulent kinetic energy k, the simulation yields a
non-compact one. Compactly supported initial conditions indeed lead to compactly supported solutions for the
system (3.10)-(3.11). The departure of the simulation results from the self-similar compactly supported solution
can be explained by the high values of the expansion parameter ℓ/L at the edges of the TZ. At these locations,
the asymptotic expansion ceases to be valid and k and ε cease to be governed by Equations (3.10)-(3.11).
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Figure 5. k/kmax as a function of x1/Lk at different times from t/τ0 = 2 to t/τ0 = 10

The existence and properties of the self-similar solution arise in part from the approximation of the flux of
kinetic energy given by Formula (3.8). This approximation has been checked directly in Figure 3. Here, we
would like make an additional comparison against the self-similar prediction corresponding to Equation (3.12).
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To this end, we introduce the non-dimensional flux :

F ∗(x1, t) =
u1k

k
3/2

max

√
2βCk(Cε2 − 1)

.

According to Formula (3.8) and (3.12), F ∗ should be equal to x1/Lk(1 − [x1/Lk]
2). The comparison between

the two functions is displayed at Figure 6 for different times. It can be seen that both simulation and prediction
are in good agreement in the central part of the mixing zone, for x1/Lk ∈ [−0.5, 0.5]. Outside, the gradient
diffusion assumption ceases to be relevant: the predicted flux of kinetic energy becomes much smaller than the
simulated flux. This observation is consistent with the one made on the non-compactness of the k− ε supports
observed in Figure 5.
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Figure 6. F ∗ as a function of x1/Lk at different times from t/τ0 = 2 to t/τ0 = 10.

As a conclusion, the simulation results appear to be in good agreement with the self-similar solution (3.12)
of the k-ε system (3.10)-(3.11). Thus, these simulations suggest that the asymptotic expansion of the PDF eq.
(3.9) and the ensuing k−ε system (3.10)-(3.11) offer a good estimate of the overall evolution of the mixing zone
given by the full PDF system (2.1) and (2.5).

4.2. Deterministic finite volume simulations

The Eulerian Monte Carlo method has allowed to study some properties of the second and third order
moments of the velocity field. However, its intrinsic noise is too high to directly study the PDF. To circumvent
this deficiency, we propose to use a deterministic solver described in appendix C.

4.2.1. Simplification of System (2.1)-(2.5)

The basic configuration studied hereafter is the same TZ configuration introduced in section 2 and governed
by Equations (2.1)-(2.5). As explained above, Equations (2.1)-(2.5) have a high number of dimensions : 1 in
time and 4 in velocity and physical space. The computational cost of a deterministic method is too expensive
so that we propose to simplify these equations in order to reduce their dimensionality. More precisely, we focus
on the marginal PDF f1 of u1. By integrating Equation (2.1) over u2 and u3, one obtains that f1 evolves as:

∂f1
∂t

+ u1
∂f1
∂x1

= − ∂

∂u1

[(
∂u2

1

∂x1
− C1

2
ωu1

)
f1

]
+

C1 − 1

2
ε∗

∂2f1
∂u1u1

, (4.1)
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where ε∗ = 2
3ε is the dissipation of u2

1. This equation is closed provided the evolution of ε∗ is known in terms

of the statistics of u1. This is not the case of Equation (2.5) which is related to k. Hence, we propose to
simplify this equation. Namely, we assume that the Reynolds stresses are strictly isotropic. Then, the turbulent

frequency can be related to u2
1 according to: ω = ε/k = ε∗/u2

1. Besides, we assume that u1uiuj is also an

isotropic tensor, which yields u1k = 3u3
1/2. With these assumptions, one deduces from Equation (2.5) the

following simplified evolution for ε∗:

∂ε∗

∂t
+

∂

∂x1

(
Cεω u3

1

)
= −Cε2ω ε∗ . (4.2)

Equations (4.1)-(4.2) are three dimensional and can be solved with the deterministic solver. They share the
same properties as Equations (2.1)-(2.5) but present a slight variation in the weakly inhomogeneous limit. The
limit of f1 is, as expected, the integral of the limit of f (3.9) over u2 and u3:

f1(u1;x1, t) =
e−u2

1/(2u
2
1)

√
2πu2

1


1 + Cg


 1√

u2
1ω

∂u2
1

∂x1


 u1√

u2
1

(
3− u2

1

u2
1

)
 , (4.3)

However, the value of u3
1 is not given by Formula (3.7) but by:

u3
1 = −Ck

u2
1

ω

∂u2
1

∂x1
,

with Ck = 6Cg. The notation Ck has been retained here because in the diffusion limit, u2
1 and ε∗ obey a

k − ε like system similar to Equations (3.10)-(3.11). The solution of this system is then obtained directly from

Equations (3.12) by replacing k by u2
1 and ε by ε∗.

4.2.2. Set-up

The computational domain is defined by [xmin, xmax] = [−30, 30] and [umin, umax] = [−6, 6]. It is discretized
with (nx, nvx) = 2562 points and the time step is set to dt = 2 · 10−3. The initial conditions are set according
to

u2
1(x1, t = 0) = k0

(
1−

[
x1

Λ0

]2)
+ kmin , ε∗(x1, t = 0) = ε0

(
1−

[
x1

Λ0

]2)
,

where k0 = 1 and Λ0 = 10 and where the values of τ0 and ε0 are given by Formula (3.13). The additional
parameter kmin is set to kmin = 10−2. It is required because Diracs cannot be represented in a deterministic
method. They are here replaced by a Gaussian with a sufficiently small variance for the PDF to approximate a
Dirac, and sufficiently large to obtain a numerical resolution of the PDF with a reasonable number of velocity
points. The coefficient of the model is set to C1 = 2.73, in order to recover Ck = 1.

4.2.3. Validity of the asymptotic expansion

The value of the small expansion parameter stabilizes at ℓ/L = 5.10−3 at the center of the TZ, and ℓ/L = 0.8
at the edge of the TZ. As expected, the validity range of the expansion is therefore not verified a posteriori at
all points of the domain, but only in the bulk of the mixing zone. This is similar to what was observed in the
EMC simulation.

Then, we can analyse the anisotropic odd part of the PDF, with respect to the analytical one (denoted as ǫaf
1

in Section 3.2). The comparison between the numerical and analytical PDF is shown in Figure 7, respectively
at the center and at the edge of the TZ. It can be seen that the predicted and simulated PDF shapes are close
to one another. This gives confidence in the asymptotic expansion derived in section 3.2.
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Figure 7. Odd part of the PDF. Comparison between the numerical PDF and the solution
obtained from the asymptotic development, at t/τ0 = 5.

4.2.4. Evolution of the mixing zone

For the TZ configuration described in section 4.2, we first compare the diffusion solution (3.12), and the
numerical solution of Equations (4.1)-(4.2). In Figures 8(a) and 8(b), we observe a good agreement between the
numerical and the analytical solutions, for the second and third moments of the PDF. Moreover, in Figure 9,
the self-similarity of the solution is checked, with respect to the quantities Rk, Rǫ and RL (that are defined in
Section 4.1.2). This shows that the PDF solution operates close to the diffusion regime, for which asymptotic
PDF solutions have been derived in Section 3.2.
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Figure 8. Comparison between Barenblatt analytical solution (3.12) and the numerical PDF
solution from t/τ0 = 1 to t/τ0 = 5. The TZ support increases as time increases.

5. Discussion and conclusions

In section 3, we showed that, in the weakly inhomogeneous limit, the simplified Langevin model (SLM) gives
rise to diffusion approximation for turbulent transport and behaves as a standard k − ε model. In section 4,
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we performed numerical simulations of a turbulent mixing zone and showed that the weakly inhomogeneous
limit and the diffusion approximation were relevant to describe the diffusion and decay of turbulence in this
configuration. These results have been obtained for the SLM. However, they should also apply to a broader class
of Langevin models, including most of those described in [2,3] and called Generalized Langevin models (GLM).
Indeed, in the turbulent mixing zone configuration, these models only differ from the SLM by correction due
the anisotropy tensor. In the weakly inhomogeneous expansion, this quantity is of order 2. Consequently, it
will not modify the orders 0 and 1 on which the present discussion is based.

The results obtained in sections 3 and 4 raise a number of questions concerning the way turbulent transport
is effectively modelled in Langevin PDF models. First, the transport of kinetic energy is given on first order
by a gradient diffusion approximation. The corresponding diffusion coefficient Ck is found to depend explicitly
on two model constants: C1 and Cε2 . We recall that the constant Cε2 is set in order to reproduce the correct
decay of kinetic energy in homogeneous isotropic turbulence. As for the constant C1, it is set in order to specify
the decay of the anisotropy tensor bij = Rij − 2k/3δij in homogeneous turbulence. Hence, one is faced with
an apparent contradiction : the coefficient controlling turbulent transport in Langevin PDF methods is set
by observations and reasonings made in homogeneous turbulence, which by definition is devoid of turbulent
transport.

Second, the value of C1 varies in the literature and so does the value of the diffusion coefficient Ck. For
C1 = 1.8, one has Ck = 0.7 and for C1 = 4.15, one has Ck = 0.22. These values have to be compared with the

usual value retained in k−ε models Ck−ε
k = 0.15−0.22. Thus, if one wants to obtain results close to a standard

k − ε model in the diffusion-dissipation regime, one should rather choose a value of C1 = 4.15. However, as
explained in section 2, higher values of C1 are usually associated with simpler models discarding the rapid
contribution of the pressure gradient. For more realistic models, it is the value C1 = 1.8 which is relevant.
Hence, one is left to choose between a value of C1 that captures correctly turbulent transport and a value
that is compatible with the presence of a rapid pressure model. In addition to the first comment, this second
remark tends to indicate that the definition of C1 and the term it controls in the simplified Langevin model
is overloaded. It looks as if the C1 term in Equation (2.1) had to represent two distinct physical mechanisms:
return to isotropy and turbulent transport.

Finally, a last remark must be made. While the Langevin PDF and k−ε models behave alike in the diffusion
limit, there is still a fundamental difference between the two. In the k − ε model, the gradient diffusion term

models turbulent advection and also turbulent transport by the pressure: −Ck−ε
k

k
2

ε ∂xi
k = uik + uip. By

contrast, in the simplified Langevin PDF model, pressure transport is neglected. This can be seen in Equation

(2.4) where only the flux of k appears. For the simplified Langevin model, one has: −Ck
k
2

ε ∂xi
k = uik. This

relation could be justified if uip was negligible. However, this is not the case. In isotropic turbulence, one has
exactly: uip = −2/5uik [14]. Therefore, an important part of turbulent transport is missing in PDF models.
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Still, the fact that uip and uik are proportional allows for an effective definition of Ck which accounts for the
missing term and give an overall correct transport in the diffusion regime. In that case, the value of uik is
overestimated by a factor 5/3 ≈ 1.7.

All these remarks point to some deficiencies in the way turbulent transport is represented in PDF models.
We hope to address some of these deficiencies in a forthcoming paper.

A. Derivation of the first order of the asymptotic expansion

First of all, we note that k
(1)

and ε(1) obey a system of equations independent of higher orders:

∂k
(1)

∂t
= −ε(1) ,

∂ε(1)

∂t
= −Cε2ω

(0) ε(0)

(
2
ε(1)

ε(0)
− k

(1)

k
(0)

)
.

Zero being a particular solution of it, we can set, without loss of generality:

k
(1)

= 0 and ε(1) = 0 .

Then, the equation for f (1) becomes:

∂f (1)

∂t
− ∂

∂uj

[
C1

2
ω(0)ujf

(1)

]
− C0

2
ε(0)

∂2f (0)

∂uj∂uj
= −u1

∂f (0)

∂z
− ∂

∂u1

[
∂σ2

∂z
f (0)

]
.

A particular form f (1) = f (0) u1

ω(0)
g
(
‖u‖2

/σ2
) 1

σ2

∂σ2

∂z
is injected in this equation (we recall that σ2 = 2k

(0)
/3).

We find that the function g(y) is solution of the following second order ODE:

2y
d2g

dy2
(y) + (5− y)

dg

dy
(y)− Cε2 + C1/2 − 2− Γ

C1 − 1
g(y) = −1

2

5− y

C1 − 1
,

where Γ =
[

1
ω(0)

∂ω(0)

∂z

]
/
[

1
σ2

∂σ2

∂z

]
. The solution of this equation is:

g(y) =
5− y

3C1 + 2Cε2 − 6− 2Γ
,

so that we obtain:

f (1) = C̃g
σ

ω

∂zσ
2

σ2

u1

σ

(
5− uiui

σ2

)
f (0) with C̃g =

1

3C1 + 2Cε2 − 6− 2Γ
.

The evolution of Γ is given by: ∂Γ
∂t = ω(0)Γ2 − (Cε2 − 1)ω(0)Γ, which solution is:

Γ =
Γ0(Cε2 − 1)

Γ0 + (Cε2 − 1− Γ0)e
(Cε2

−1)
∫ t
0
ω(0)(s)ds

,

with Γ0 the initial condition of Γ. For physical reasons, we are only interested in solutions for which k
(0)

and
ε(0) have approximately the same spatial profiles. In that case, Γ0 remains small. In this work, we will more
specifically restrict our attention to cases for which Γ0 is smaller that (Cε2 − 1). Then, Γ tends to 0, so that,

for long times, we can neglect its contribution in the final expression of C̃g. The PDF f (1) is then given by
Equation (3.6). Note that the case Γ0 larger than (Cε2 − 1) would yield an infinite value of Γ which is not
physically relevant in the present context. The only other relevant case would be (Cε2 − 1) = Γ0, which is a
special limit not treated in this work.
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B. Eulerian Monte Carlo solver

Following [13], a statistical equivalence can be found between the PDF equation (2.1) and the following
system of stochastic partial differential equations (SPDE):

∂r

∂t
+

∂

∂x1
(ru1) = 0 , (B.1a)

∂vi
∂t

dt+ v1
∂vi
∂x1

dt =
∂R1i

∂x1
dt− C1

2
ωvidt+

√
C0εdWi , (B.1b)

where Wi are independent Wiener processes. More precisely, the weighted PDF:

f̃ =
r(x1, t)δ(v(x1, t)− u)

r(x1, t)

has an evolution equation identical to equation (2.1). Then provided the right boundary and initial conditions
are chosen, system (B.1) will allow to solve PDF equation (2.1).

From a numerical point of view, the main difficulty lies in solving the advection part of the equation:
∂vi

∂t + v1
∂vi

∂x1
. In the PDF equation the equivalent of this term corresponds to purely linear advection and this

property should be preserved in the interpretation of the SPDEs. Thus, the latter should be interpreted as
quasi-linear hyperbolic equations: characteristic curves of the SPDEs can cross, which results in a multivalued
solutions. At points where the solution of the velocity is multivalued, the corresponding density also becomes
a multivalued function. This kind of properties also arises in different contexts. See for instance [15].

Traditional numerical schemes which satisfy an entropy increase condition are not appropriate for the de-
scription of multivalued solutions. Instead, one can use a level-set based method as in [15]. Alternatively, given
the stochastic nature of our problem, on can devise a variation on the Random Choice Method (RCM) [16].
The details of the derivation of these methods will be given in a forthcoming article. We only give here its final
expression.

Space is discretized with a uniform mesh xj = j∆x, j = 1 · · ·Nx. Time is discretized on intervals [tn, tn+1 =
tn +∆t]. Ns stochastic fields are solved simultaneously. They are each indexed by the superscript (s). For the
sake of simplicity, we will only use this index when necessary. For a given stochastic field, the numerical scheme
is the following:

rn+1
j =rnj − ∆t

∆x

[∣∣(v1)nj
∣∣ rnj − v−j+1r

n
j+1 − v+j−1r

n
j−1

]
,

vi|n+1
j =Sn

i + vi|nj+1η
+
j + vi|nj−1η

−
j + vi|nj η0j ,

where v+j−1 = max(v1|nj−1, 0), v
−
j+1 = −min(v1|nj+1, 0) and where η

{+,−,0}
j are random numbers defined by:

(
η+j , η

−
j , η

0
j

)
=





(1, 0, 0) , with probability P+
j

(0, 1, 0) , with probability P−
j

(0, 0, 1) , with probability P 0
j = 1− P+

j − P−
j

.
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The probabilities P 0
j , P−

j and P+
j define the random choice method. They are given by:

P+
j =

rnj+1

rn+1
j

v+j+1

∆t

∆x
,

P−
j =

rnj−1

rn+1
j

v−j−1

∆t

∆x
,

P 0
j =

rnj

rn+1
j

(
1− |(v1)nj |

∆t

∆x

)
.

To guarantee that the probability P 0
j is positive, one must enforce the following CFL condition:

|(v1)nj |
∆t

∆x
≤ 1 .

Finally, the source term Sn
i is defined as:

Sn
i = −C1

2
ωnvni ∆t+

√
C0ε

n∆tξni −
〈
vi|nj+1η

+
i + vi|nj−1η

−
i + vi|nj η0i

〉
Ns

, (B.2)

where ξni are random independent Gaussian noises with variance 1 and mean 0 and where, for any quantity q,
〈q〉Ns

represents the weighted mean on the stochastic field:

〈q〉Ns
=

∑Ns

s=1 r
(s)q(s)

∑Ns

s=1 r
(s)

.

The last term in equation (B.2) is a discretization of ∂R1i

∂x1
that guarantees that advection has a zero contribution

to the evolution of the mean, as should be the case.
The numerical scheme described here can be shown to be first order in time and in space when stochastic

convergence is achieved.

C. Deterministic direct method

We propose here a Finite Volume numerical method to discretize the equation (4.1), where the space, velocity
fluctuation and time dimensions are discretized to yield a unique value of the PDF f1(u1;x1, t). This numerical
scheme should allow to satisfy the following constraints:

f1(u1;x1, t) ≥ 0 , (C.1)∫

R

f1(u1;x1, t)du1 = 1 , (C.2)

∫

R

u1f1(u1;x1, t)du1 = 0 . (C.3)

To simplify notations, we will hereafter drop the index 1 from x1 and f1.
We introduce a Cartesian, uniform mesh, defined by the control volumes Ci,j =

[
xi−1/2, xi+1/2

] [
uj−1/2, uj+1/2

]
,

where (i, j) ∈ I × J ⊂ N × Z. We define ∆x and ∆v as the sizes of the space and velocity control volumes,
respectively. xi = i∆x and uj = j∆v here refer to the cell centres, whereas xi+1/2 = (i + 1/2)∆x and
uj+1/2 = (j + 1/2)∆u refer to the volume control boundaries.
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Let fn
i,j be an average approximation of the PDF on the control volume at time tn = n∆t, n ∈ N,

fn
i,j =

1

∆x∆v

∫

Ci,j

f(x, u, tn)dudx . (C.4)

We start from the Finite Volume scheme originally derived in [17]. We recall the basic steps leading to its
construction on the simplified advection equation

∂f

∂t
+ u

∂f

∂x
= 0 , u > 0 , (C.5)

for the sake of simplicity. Its extension by symmetry to the negative velocity space is straightforward. Its
application to the right-hand side, velocity drift terms, in Equation (4.1), will be discussed hereafter.
First, a time explicit Euler scheme is employed to discretize the Equation (C.5) as

fn+1
i = fn

i + u
∆t

∆x

(
Fn
i+1/2 − Fn

i−1/2

)
, (C.6)

where Fn
i+1/2 = F (xi+1/2, t

n) stands as a discrete conservative approximation of f(x, t) on the boundary of the

control volume
[
xi−1/2, xi+1/2

]
. Second, following [17], a second order MUSCL reconstruction technique (by

primitive), leads to the approximation

F (x, tn) =

[
fn
i + ǫ+

x− xi

∆x

(
fn
i+1 − fn

i

)]
, ∀x ∈

[
xi−1/2, xi+1/2

]
. (C.7)

The slope limiter ǫ+ is introduced in order to recover the maximum principle 0 ≤ fn
i ≤ ‖f‖∞ under the CFL

condition u∆t
∆x ≤ 1. Its expression, given by

ǫ+ =





0 , if
(
fn
i+1 − fn

i

) (
fn
i − fn

i−1

)
< 0

min

(
1,

2 (‖f‖∞ − fn
i )

fn
i − fn

i+1

)
, if
(
fn
i+1 − fn

i

)
< 0

min

(
1,

2fn
i

fn
i+1 − fn

i

)
, else

(C.8)

leads to a non-linear expression for the numerical flux.

This approximation procedure can be further extended to evaluate the velocity drift term in the right hand side

of Equation (4.1), which involves the velocity variance gradient
∂u2

∂x
. This drift term should balance with the

advection term in the left hand side of Equation (4.1), in order to guarantee the zero mean velocity conservation

(C.3). At the discrete level, this requirement is met with a re-definition of
∂u2

∂x

∣∣∣∣∣

n

i

as a function of the discrete,

reconstructed, numerical flux obtained for the advection term (left hand side of Equation (4.1))

∂u2

∂x

∣∣∣∣∣

n

i

=
∑

j

u2
j

Fn
i+1/2,j − Fn

i−1/2,j

∆x
∆v

/
−

∑

j

uj

Fn
i,j+1/2 − Fn

i,j−1/2

∆v
∆v


 , (C.9)

which is the analogous of the continuous relation, obtained by integration by parts,

∂u2

∂x
=

∫

R

duu2 ∂f

∂x

/(
−
∫

R

duu
∂f

∂u

)
. (C.10)



418 ESAIM: PROCEEDINGS AND SURVEYS

The chosen discrete definition (C.9) mimics the integration by part (C.10) required to satisty the zero mean
velocity conservation (C.3), that is u = 0.
A similar procedure is now applied to the C1 term in the right hand side of Equation (4.1), which is rewritten
as

∂

∂u

(
C1

2
ωuf

)
→ ∂

∂u

(
C1

2
ω (u− u) f

)
. (C.11)

An extension of the Finite Volume scheme (C.6)-(C.7)-(C.8) is employed here, to the more general case where
the fluxes depend on the drift variable u. This dependence is treated with a conservative centered discretization
of the velocity variable in the flux uf . A discrete definition for u is required at this point in (C.11). We
introduce an approximation that satisfies the zero mean velocity conservation in a discrete manner on the
discrete analogous of the Equation (C.11)

un
i =

∑

j

uj

Fn
i,j+1/2 − Fn

i,j−1/2

∆v
∆v

/

∑

j

uj

uj+1/2F
n
i,j+1/2 − uj−1/2F

n
i,j−1/2

∆v
∆v


 , (C.12)

which is the discrete analogous of the continuous expression

u =

∫

R

duu
∂f

∂u

/∫

R

du
∂

∂u
(uf) = 0 . (C.13)

We finally obtain an unsplit discretization for all the advection terms in Equation (4.1). The discrete analogous
of the probability density conservation (C.2) is satisfied if the slope limiters are not active for the advection

term u
∂f

∂x
. In this case, we indeed obtain a centered discretization whatever the sign of the velocity is. We

accept a small deviation from the probability density conservation, where the limiters are active to guarantee
the maximum principle.

We now turn to the discretization of the C0 operator in the right hand side of Equation (4.1). This term
is splitted and discretized with an centered, implicit scheme, with net flux boundary conditions on the velocity
space. This ensures the respect of the conservations (C.2) and (C.3), at the discrete level. Moreover, we obtain
a M-matrix with a positive right hand side, leading to a positive PDF.
Finally, we remark that the splitting of the C0 operator is convenient in the sense that it allows both the
implicitation of this term and an easy implementation of a parallelisation on the space dimension x with good
expected scalability. We have made use of the MPI parallelisation protocol to do so.
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