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THE STEIN-DIRICHLET-MALLIAVIN METHOD

L. Decreusefond1

Abstract. The Stein’s method is a popular method used to derive upper-bounds of distances between
probability distributions. It can be viewed, in certain of its formulations, as an avatar of the semi-group
or of the smart-path method used commonly in Gaussian analysis. We show how this procedure can
be enriched by Malliavin calculus leading to a functional approach valid in infinite dimensional spaces.

Résumé. La méthode dite de Stein est habituellement utilisée pour évaluer des bornes supérieures
de distances entre mesures de probabilité. Nous montrons comment l’une de ses variantes, appelée
méthode du semi-groupe peut Ãłtre enrichie par le calcul de Malliavin. Cela permet notamment de
traiter des exemples dans des espaces fonctionnels de dimension infinie.

1. Introduction
Distances between probability or probability metrics is a very old topic since it is rich of a wide range of ap-

plications. As mathematical objects, it is natural to define a metric topology on spaces of probability measures.
As modeling objects, it is natural to compare probability measures which appear in the mathematical represen-
tations of random phenomena. This topic has at least three facets: The diverse definitions of probability metrics
which are tailored for each applications; the computations and comparisons of these different distances for the
widest possible range of situations and at last, the applications which go from mathematical considerations like
functional inequalities to more practical results of rate of convergence of stochastic algorithms. The Figure 1
shows a partial view of the different aspects of this subject.

A few words are in order to explain the blue and red colors. For the computations of distances between
measures µ and ν, we need to impose some relationships between these two measures. Absolute continuity is
one very frequent type of relationships between two measures. The Radon-Nykodim theorem gives a precious
tool to estimate divergence-like and Wasserstein distances (see for instance [15] for such an application). One
may also reverse the point of view: Given a positive function F , compare the µ and ν = F dµ to obtain some
precious functional inequalities on F (see [1]). These results thus belong to the same spirit and are colored
in blue. Another natural way to put a structure between two measures is to have a map which transforms a
known measure into another one and to compare this transformed measure to a reference probability. This is
exactly the framework in which the Stein’s method performs well if we consider Kantorovitch-Rubinstein type
distances (defined below). Typical applications of these form of distances are to give the convergence rates of
celebrated theorem like CLT or Berry-Esseen Theorem or of random algorithms [25]. The links between these
different points justify that they are all colored in red.

This paper is a rather informal introduction to the Stein-Dirichlet-Malliavin method (SDM for short hence-
forth). This is an extension of the classical Stein’s method, enriched by the structure given by Dirichlet forms
and Malliavin calculus. We hope that this new point of view will lead to more systematic proofs of convergence,
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Figure 1. Mindmap

extending their applicability. The price to pay is to master some new concepts from Malliavin calculus like the
gradient and its associated adjoint. That is why we tried to maintain the technicalities at the lowest possible
level, insisting more on the ideas at play.

We first show the different kinds of probability metrics that exist in the literature. We do not pretend to
be exhaustive but aim to point out to the wide diversity of possible definitions. In Section 2, we establish the
principles of the SDM method and show how it can be applied to the Poisson-Gaussian convergence. We then
explain how to construct the necessary structures to extend this procedure to infinite dimensional spaces. In
Section 4, Edgeworth expansions are obtained by iterating the previous procedure as often as desired.

2. Taxonomy of probability metrics
In what follows, all the probability measures are defined on Polish spaces denoted either by E or F, whose

borelian σ-fields is B(E), respectively B(F). There are several notions of metrics between probability measures.
An interesting survey of the main variants and their mutual relationships can be found in [17]. Each of one is
often adapted to a particular purpose. They can roughly and partly be classified in three types. The first one
is the so-called Prokhorov distance.

DistPro(P,Q) = inf
{
ε > 0,P(A) ≤ Q(Aε) + ε for all A ∈ B(E)

}
,

where Aε is the ε-neighborhood of A defined by Aε = {y ∈ E, ∃x ∈ A, d(x, y) ≤ ε}. This distance is crucial as
its associated topology is precisely the topology of the convergence in distribution, i.e. we have the following
theorem which can be found in [13].

Theorem 2.1. A sequence (Pn, n ≥ 1) of probability measures converges weakly to P if and only if DistPro(Pn,P)
tends to 0 as n goes to ∞.

Unfortunately, this distance is hardly computable and that justifies the search for alternative and more
tractable definitions. A vast category of probability metrics is represented by the f -divergence defined as
follows.
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Definition 2.2. Let f be a convex function such that f(1) = 0. Then, for two probability measures P and Q
on a Polish space E,

Df (Q |P) =


∫
E

f

(
dQ
dP

)
dP if Q� P,

∞ otherwise.
For instance, if we choose f = t ln t, we obtain the Kullblack-Leibler distance. The Hellinger distance

corresponds to the case where f(t) = (
√
t− 1)2. Total variation between absolutely continuous measures boils

down to take f(t) = |t− 1|.
Another class of distances between measures can be obtained via optimal transportation theory. For general

results about this theory, we refer to the books [24,25,28,29].
Definition 2.3. Let (E, P) and (F, Q) two Polish spaces equipped with a probability measure and c a semi-
continuous function from E × F to R+ ∪ {∞}. The optimal-transportation problem or Monge-Kantorovitch
problem MKP(P,Q) is to find

min
γ∈Σ(P,Q)

∫
E×F

c(x, y) dγ(x, y)

where Σ(P,Q) denoted the space of probability measures on E× F with first marginal P and second marginal
Q.

Said otherwise in a more probabilistic way, it amounts to find the coupling between P and Q which minimizes
the cost, i.e. to construct on the same probability space, two random variablesX and Y of respective distribution
P and Q which minimizes E [c(X,Y )] among all the possible constructions. The usual cost functions are of the
type c(x, y) = dist(x, y)p where dist is a distance and p a positive real number. For the Euclidean distance and
p = 2, we can construct the so-called Wasserstein distance by considering

W (P,Q) =

√
min

γ∈Σ(P,Q)

∫
Rd×Rd

|x− y | 2 dγ(x, y).

All the distances viewed so far are not unrelated as many functional inequalities do exist between all of them.
Just to mention two examples, the Pinsker inequality states that the total variation distance is controlled by
the Kullblack-Leibler distance.

D|t−1|(P,Q) ≤
√

1
2Dt ln t(P,Q).

On the other hand, the so-called HWI identity (see [28]) relates the relative entropy (H), the Wasserstein
distance (W) and the Fischer information (I) as follows.
Theorem 2.4. Let P and Q two probability measures on Rn such that P = exp(−V ) dx with ∇2V ≥ KIdn.
Then,

Dt ln t(P,Q) ≤W (P,Q)
√
D∇| ln t|2(P,Q)− K

2 W (P,Q)2.

These examples are here only to give a glimpse of the vast subject of the relationship between all these
notions of distances. However, this is not the true subject of the present paper. The theorem which justifies
the sequel is known as Kantorovitch-Rubinstein theorem (see [13,14]) and says the following.
Theorem 2.5. For P and Q two probability measures on a Polish space E, consider the Monge-Kantorovitch
problem for a cost function c which is a distance on E. Then, we have the following representation

min
γ∈Σ(P,Q)

∫
E×F

c(x, y) dγ(x, y) = sup
F∈Lipc(1)

(EP [F ]−EQ [F ]) ,

where F ∈ Lipc(1) means that F is c-Lipschitz continuous: |F (x) − F (y)| ≤ c(x, y) for all x, y ∈ E. The
resulting distance between P and Q, will be called henceforth the Kantorovitch-Rubinstein distance as in [28].
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This formulation of a distance motivates alternative definitions by changing the set of test functions. For
instance, for F = {1(−∞; x], x ∈ R}, supF∈F |EP [F ]−EQ [F ]| is the total-variation distance. It turns out that
Stein’s method is particularly well suited to estimate such kind of distances as we shall see now.

3. Stein’s method
Historically, the Stein’s method for Gaussian distribution dates back to the seminal paper of Stein [27]. It

was soon extended to the Poisson distribution in the paper of Chen [7]. It is then impossible to track all the
extensions of this approach, made mainly by A. Barbour and his collaborators, to several other distributions like
compound Poisson [5], Poisson point processes [30], stationary measure of birth-death process, even Brownian
motion [2]. For a whole account of all this period, one may refer to the books [3, 4] and references therein.
The main breakthrough came with the paper of Nourdin and Peccati [21], in which it is shown that combining
Malliavin calculus and Stein’s approach, one can obtain a rather simple proof of the striking fourth moment
theorem, established earlier in [22]. This was the starting point of a bunch of articles with with a wide area
of applications: rate of convergence in the central limit theorem, Berry-Esseen theorem, iterated-logarithm
theorem, limit theorems on manifolds, etc.

3.1. Dirichlet-Malliavin structure
The procedure of the Stein’s method can be abstracted within the setting of Dirichlet structures (for details,

we refer to [6, 16, 20]). The subsequent explanations are at a very formal level since the hard part for this
machinery to work is to find the convenient functional spaces for each case of applications.

The first idea underlying the Stein’s method is to characterize the target measure by an algebraic equation:
Find a functional operator L on F such that EQ [LF ] = 0 for any F in F if and only if Q = P. It turns out
that this functional operator L can be viewed as the (infinitesimal) generator of a Markovian semi-group, which
we denote by P = (Pt, t ≥ 0) whose stationary measure is P: The image measure of P by Pt is still P for any
t ≥ 0. Under some technical hypothesis, there exists a strong ergodic Markov process X = (X(t), t ≥ 0) of
invariant measure P and of generator L. It must be noted that the knowledge of one of L, P or X is equivalent
to the knowledge of the other two. Formally speaking, for any x ∈ E,

Ptf(x) = etLf(x), Lf(x) = dPtf(x)
dt

∣∣∣∣
t=0

, Ptf(x) = E [f(X(t)) |X(0) = x] .

One can also associate to X, the so-called Dirichlet form defined formally by

E(F,G) = EP [LF G] ,

for any F and G sufficiently regular. As before, if we are given such a bilinear form E , one can retrieve L by the
following relationship: For any F , LF is the unique element H such that for any G, E(F, G) = EP [HG]. This
means that whichever of L, X, P or E we are given, the others are uniquely determined (the reader is referred
to the particularly illuminating Diagram 2, page 36 of [20]).

Within this framework, it is easy to see that the Stein-Dirichlet representation formula holds: For any
bounded F ,

EQ [F ]−EP [F ] = EQ

[∫ ∞
0

LPtF dt
]
. (1)

This formula is also known as the semi-group method or the smart-path formula in the Stein’s method literature.
This means that we can write

distF (P,Q) = sup
F∈F
|EP [F ]−EQ [F ]| = sup

F∈F

∣∣∣∣EQ

[∫ ∞
0

LPtF dt
]∣∣∣∣ .
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Instead of using coupling arguments to estimate this right-hand-side as usually done in the Stein’s method, we
use another functional operator which is the gradient in the sense of Malliavin. It is usually denoted by D and
satisfies the identity L = D∗D where D∗ is the adjoint of D. This a square root of the symmetric operator L,
but not all square-roots are interesting as we also need a nice commutation relationship between D and P . A
few examples are the best way to illustrate what we mean.

3.2. One dimensional examples
If P denote the standard Gaussian measure on R, then X is the Ornstein-Uhlenbeck process defined by

dX(t) =
√

2 dB(t)−X(t) dt, X(0) = x,

where B is a standard one-dimensional Brownian motion. A straightforward application of the Itô formula gives
the following expression of X:

X(t) = e−tx+
√

2
∫ t

0
e−(t−s) dB(s).

It is then easy to see that X(t) ∼ N (e−tx, 1− e−2t), which, in turn, entails the Mehler representation formula:

PtF (x) =
∫

R
F (e−tx+

√
1− e−2ty) dP(y).

It follows by differentiation and integration by parts that for F ∈ C2
b ,

LF (x) = xF ′(x)− F ′′(x), for all x ∈ R.

The Malliavin gradient is the usual derivative operator and standard computations show that∫
R
DF (x)G(x) dP(x) =

∫
R
F (x)(xG(x)−DG(x)) dP(x),

hence that D∗G(x) = xG(x)−DG(x) and L = D∗D. Moreover, we have DPtF (x) = e−tPtDF (x) which is the
commutation relationship alluded above.

If P represents the Poisson measure on N of parameter λ, the process X can be viewed as the number of
occupied servers in an M/M/∞ queue (see [11]), L is the corresponding generator:

LF (x) = λ(F (x+ 1)− F (x)) + x(F (x− 1)− F (x)), for all x ∈ N,

with the convention that 0.F (−1) = 0. The gradient is defined by

DF (x) = F (x+ 1)− F (x),

and we have DPtF = e−tPtDF (see [11, Theorem 11.16] or [12]). For the scalar product in L2(P), we have∫
N
DF (x)G(x) dP(x) =

∫
N
F (x)(x

λ
G(x− 1)−G(x)) dP(x). (2)

Hence,
D∗F (x) = x

λ
G(x− 1)−G(x) and L = D∗D.

We now show how these constructions do articulate to give a new approach to the Stein’s method.
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It is well known that for Zλ a Poisson random variable of parameter λ,

Ẑλ = Zλ − λ√
λ

λ→∞−−−−→ N (0, 1) in distribution.

We are going to use the Stein-Dirichlet-Malliavin method to evaluate the rate of convergence. We are in a
situation where the target measure in defined R whereas the initial randomness comes from a probability
measure on N. The map T defined by

T : E = N −→ F = R

n 7−→ n− λ√
λ
,

maps one space to the other and we are to evaluate the distance between T ∗Qλ, the image measure of Qλ, the
Poisson(λ) probability, by the map T and P the standard normal distribution on R. This is a particular case
of the general situation illustrated in Figure 2.

Initial space Target space

(E,Q) (F,P)

(F, T ∗Q)

T

distF (T ∗Q, P) ?

Figure 2. Comparison between a measure P and T ∗Q.

In view of (1), we have to estimate

sup
F∈F

∫ ∞
0

∫
R
x.(PtF )′(x)− (PtF )′′(x) dT ∗Qλ(x) dt,

where is the Ornstein-Uhlenbeck semi-group given by the Mehler formula above and F is a functional space to
be conveniently chosen. According to the definition of T , the quantity to maximize is equal to

E
[∫ ∞

0
Ẑλ.(PtF )′(Ẑλ)− (PtF )′′(Ẑλ) dt

]
.

Applying (2) to G = 1 and F ◦ T , we get

√
λ E

[
F (Ẑλ + 1√

λ
)− F (Ẑλ)

]
= E

[
Ẑλ F (Ẑλ)

]
.
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Hence,

E
[
Ẑλ.(PtF )′(Ẑλ)

]
=
√
λE
[
(PtF )′(Ẑλ + 1√

λ
)− (PtF )′(Ẑλ)

]
. (3)

For any t > 0, the regularizing properties of Pt entails that PtF is thrice differentiable. Hence,

(PtF )′(Ẑλ + 1√
λ

)− (PtF )′(Ẑλ) = 1√
λ

(PtF )′′(Ẑλ) + 1
λ

∫ 1

0
(1− r)(PtF )(3)(Ẑλ + r√

λ
) dr. (4)

And then, a miracle occurs: The term involving the second order derivative vanishes and we are lead to maximize

1√
λ

E
[∫ ∞

0

∫ 1

0
(1− r)(PtF )(3)(Ẑλ + r√

λ
) dr dt

]
(5)

for F over F . There is now a delicate point. If F is in C1
b , we already mentioned that

(PtF )′(x) = e−tPt(F ′)(x).

Furthermore, by integration by parts with respect to the Gaussian measure, it is easy to see that

(PtF )(k)(x) =
(

e−t√
1− e−2t

)k ∫
R
F (e−tx+

√
1− e−2ty) yk dP(y),

whenever F is bounded, for any k ≥ 1. At first glance, it seems easy to bound (5) by using the previous formula
for k = 3. Unfortunately, the term exp(−kt)(1−exp(−2t))−k/2 is integrable over [0,+∞) only for k = 1. Hence,
we must choose F = {F ∈ C2

b , ‖F‖C2
b
≤ 1} and then we have

∣∣∣(PtF )(3)(x)
∣∣∣ =

∣∣∣∣ e−3t
√

1− e−2t

∫
R
F (2)(e−tx+

√
1− e−2ty) y dP(y)

∣∣∣∣ ≤ e−3t
√

1− e−2t
‖F (2)‖∞

∫
R
|y| dP(y).

Plugging this inequality into (5), we get

sup
‖F‖C2

b
≤1

∣∣∣∣E [F (Ẑλ)
]
−
∫
F dP

∣∣∣∣ ≤ 1√
λ

∫ 1

0
(1− r) dr

∫ ∞
0

e−3t
√

1− e−2t
dt

∫
R
|y| dP(y) =

√
π

4
√

2
1√
λ
· (6)

Hence we have established the rate of convergence for the Kantorovitch-Rubinstein distance associated to F =
{F ∈ C2

b , ‖F‖C2
b
≤ 1}. In dimension 1, for Gaussian approximation, we could have used LF (x) = xF (x)−F ′(x)

as a characterizing operator and thus used only 1-Lipschitz functions with a slightly different constant in front
of the λ−1 factor, namely

sup
F∈Lip(1)

∣∣∣∣E [F (Ẑλ)
]
−
∫
F dP

∣∣∣∣ ≤ 1√
2π

1
λ
·

Note that this upper-bound is better than the bound obtained by the classical Stein’s method where (2π)−1/2

is replaced by 1. However, this line of thought is not applicable to higher dimensions.
More generally, the recipe of the Stein-Dirichlet-Malliavin method is the following.
• Characterize the target measure as the stationary distribution of an ergodic Markov process,
• Construct the two Dirichlet-Malliavin structure on both initial and target spaces,
• Perform an integration by parts on the initial space (see (3)),
• Replace the gradient on the initial space by a function of the gradient on the target space (this is done
here by the Taylor formula (4)), at the price of additional terms to be controlled,

• Finish the computations in the target space using the commuting relationship : DPt = e−tPtD.
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3.3. Higher dimensions
This procedure can be generalized to any dimension provided that we have Dirichlet-Malliavin structures on

both the initial and the target spaces. For the Gaussian measure in dimension d, the generator is given by

LF (x) = x.DF (x)−∆F (x), for all x ∈ Rd, (7)

where D is the usual gradient in Rd and ∆ is the Laplacian operator. The Mehler formula stays formally the
same with an integral over Rd instead of R and X is the Rd-valued process composed of d independent copies
of the one dimensional Ornstein-Uhlenbeck process. The Malliavin gradient is still the usual gradient and the
commutation relationship between D and Pt is easily seen to hold again. We can then retrieve the results of [23].

Real difficulties arise when we try to generalize this approach to infinite dimensional spaces like the Wiener
space. It is tempting to define L formally as in (7), replacing the Laplacian by the trace of D◦D. Unfortunately,
for this trace term to exist, we need to restrict the space F of test functions and to choose conveniently the
space F. There are actually two papers which address this problem. In both of them [8, 26], despite apparent
dissimilarities, we end by considering F a Hilbert space with a Gaussian measure.

Let us show how it works on an example. For Nλ a Poisson process on R+ of intensity λ, it is known that

N̂λ(t) = Nλ(t)− λt√
λ

λ→∞−−−−→ B(t) in distribution,

where B is a standard Brownian motion and the convergence is understood to hold in D, the Skorohod space of
rcll functions. To compare the two distributions implies to find a common Hilbert space which supports both
the distribution of B and N̂λ. In principle, any Sobolev-like space should do. In [8], we chose the so-called
Besov-Liouville space Iβ,2 for β < 1/2 defined by

Iβ,2 = {f, ∃ḟ ∈ L2([0, 1]) such that f(x) = 1
Γ(β)

∫ x

0
(x− y)β−1ḟ(y) dy}.

It is a Hilbert space when equipped with the scalar-product 〈f, g〉β,2 = 〈ḟ , ġ〉L2 . The Wiener measure on this
space, denoted by µβ , is defined by

Eµβ [exp(i〈η, ω〉β, 2)] = exp(−1
2 〈Vβη, η〉β, 2).

where

Iβ0+f(x) = 1
Γ(β)

∫ x

0
(x− y)β−1ḟ(y) dy, Iβ1−f(x) = 1

Γ(β)

∫ 1

x

(y − x)β−1ḟ(y) dy

and Vβ = Iβ0+ ◦ I1−β
0+ ◦ I1−β

1− ◦ I−β0+ .

The Ornstein-Uhlenbeck semi-group on (Iβ,2, µβ) is defined for any F ∈ L2(Iβ,2, µβ) by

P βt F (u) :=
∫
Iβ,2

F (e−tu+
√

1− e−2t v) dµβ(v).

The gradient is the Fréchet gradient on Iβ,2 and all the other properties still holds formally as in finite dimension.
As initial space, we consider E = N, the space of locally finite configurations on R+ equipped with the vague

topology. The measure Qλ is such that the canonical process, denoted by Nλ, is a Poisson process of intensity
λ, for details we refer to [8]. On the initial space, we actually only need to know the gradient and an integration
by parts formula. Here, we take

DxF (Nλ) = F (Nλ + δx)− F (Nλ),
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where Nλ + δx is the configuration Nλ with an additional atom at location x. The well-known Campbell-Mecke
formula ( [18,19]) is equivalent to say that

EQλ

[
F

∫ 1

0
Gτ ( dNλ(τ)− λ dτ))

]
= λ EQλ

[∫ 1

0
DτF Gτ dτ

]
,

for G a deterministic process. The map T is defined by

T : N −→ Iβ,2

N 7−→ (t 7→ N(t)− λt√
λ

)·

Proceeding exactly along the same lines as before, one can show that there exists cβ > 0 such that

sup
‖F‖C2

b
(Iβ,2; R)≤1

∣∣EQλ
[F ]−Eµβ [F ]

∣∣ ≤ cβ√
λ
, (8)

where C2
b (Iβ,2; R) is the set of twice Fréchet differentiable functionals on Iβ,2, with bounded differentials. This

is the generalization we could expect of (6).
Other examples of the application of this procedure, involving other functional spaces, can be found in the

papers [8, 12]. A similar approach with Malliavin calculus replaced by a coupling argument appears in [10].

4. Edgeworth expansion
The Stein’s method as developed here can be iterated to obtain Edgeworth expansions. We now want to

precise the expansion obtained in (6). For, we go one step further in the Taylor formula (4):

ψ(Ẑλ + 1/
√
λ)− ψ(Ẑλ) = 1√

λ
ψ′(Ẑλ) + 1

2λψ
′′(Ẑλ) + 1

6λ3/2ψ
(3)(Ẑ + θ/

√
λ).

Hence,

E
[
ẐλDPtF (Ẑλ)−D(2)PtF (Ẑλ)

]
= 1

2
√
λ

E
[
D(3)PtF (Ẑλ)

]
+ 1

6λE
[
D(4)PtF (Ẑ + θ/

√
λ)
]
. (9)

If F is thrice differentiable with bounded derivatives then PtF is four times differentiable, hence the last term
of (9) is bounded by λ−1 e−4t√

1−e−2t
‖F (3)‖∞/6. Moreover, applying (6) to DPtF shows that

E
[
D(3)PtF (Ẑλ)

]
= EP

[
D(3)PtF

]
+O(λ−1/2).

Combining the last two results, we obtain that for F thrice differentiable

E
[
F (Ẑλ)

]
−EP [F ] = 1

2
√
λ

EP

[∫ ∞
0

D(2)PtF dt
]

+O(λ−1).

This line of thought can be pursued at any order provided that F is assumed to have sufficient regularity and
we get an Edgeworth expansion up to any power of λ−1/2. Using the properties of Hermite polynomials, this
leads to the expansion:

E
[
F (Ẑλ)

]
−EP [F ] = 1

6
√
λ

EP [FH3] +O(λ−1),

where Hn is the n-th Hermite polynomials. In [9], we generalized this approach to the Poisson process-Brownian
motion convergence established in (8).
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5. Conclusion
We showed how the Stein’s method can be abstracted in the framework of Dirichlet forms and Malliavin

calculus. This gives raise to a new method of proof which can be applied to infinite dimensional spaces and
iterated to get Edgeworth expansions. One open question is to apply this approach to other limiting processes
like stable or max-stable processes, Brownian bridges, etc.
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