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A STOCHASTIC MODEL FOR PROTRUSION ACTIVITY ∗, ∗∗
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Abstract. In this work we approach cell migration under a large-scale assumption, so that the system
reduces to a particle in motion. Unlike classical particle models, the cell displacement results from its
internal activity: the cell velocity is a function of the (discrete) protrusive forces exerted by filopodia
on the substrate. Cell polarisation ability is modeled in the feedback that the cell motion exerts
on the protrusion rates: faster cells form preferentially protrusions in the direction of motion. By
using the mathematical framework of structured population processes previously developed to study
population dynamics [4], we introduce rigorously the mathematical model and we derive some of its
fundamental properties. We perform numerical simulations on this model showing that different types
of trajectories may be obtained: Brownian-like, persistent, or intermittent when the cell switches
between both previous regimes. We find back the trajectories usually described in the literature for
cell migration.

1. Introduction

Cell migration is a fundamental process involved in physiological and pathological phenomena such as the
immune response, morphogenesis, but also the development of metastasis from a tumor [1, 5]. To ensure these
functions, cells have a highly complex out-of-equilibrium internal organization where multiscale reactions occur
among polymers and molecules, leading to unpredictable macroscopic behaviours.

In the case of cell crawling, cells spread on an adhesive substrate, and form extensions also called protrusions.
Then, molecular adhesion complexes grow and ensure a mechanical connection between protrusions and the
substrate, by which forces are transmitted and lead to a displacement. Protrusions of a crawling cell can be
divided in two types: lamellipodia are wide and flat and fluctuate continuously, while filopodia are long finger-like
extensions able to grow further and probe the substrate.

It has been observed that cells protrusive activity fluctuates a lot, and that these fluctuations are responsible
for the long-term characteristics of trajectories [2]. Cell trajectories can be very different even for a single cell
type: some do not explore the environment, while others have a much more efficient displacement. It is of
interest to try to capture this diversity in a mathematical model.

Existing stochastic models for cell trajectories are either Random Walks, Lévy flights or Active Brownian
Particle models [9]. In these models, key-features of the motion are quantified, such as the mean persistence
time, or the stationary distribution of the particle’s velocity [9]. However, the dynamics is macroscopic and
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Figure 1. Scheme of a polarised crawling cell: protrusive structures at the front (lamel-
lipodium, filopodia), and contractile fibers at the back. The asymmetric activity combines
with an asymmetric repartition of molecular regulators organized in feedback loops. Source: [7]

processes such as polarisation are taken into account by an arbitrary positive feedback at the scale of the
trajectory. In this work, we present a 2D stochastic particle model for cell trajectories based on the filopodial
activity, able to reproduce the diversity of trajectories observed.

2. Model construction

We choose space and time scales large enough so that the cell is described as an active particle (its center
of mass). Cell shape and intracellular dynamics are therefore considered at the cell scale. We define now the
velocity model that is based on force equilibrium.

2.1. Velocity model

At each time, the cell velocity writes ~Vt, and its polar coordinates (vt, θt). The crawling of cells on an adhesive
substrate occurs at very small scales. Indeed, cells sizes are of the order of 1− 10 µm, while their speeds ranges
at the scale of µm s−1. Therefore, inertia is negligible for this system (see more precise justifications of the
low Reynolds number setting in e.g [10]), and Newton’s second law of motion reduces to instantaneous force
equilibrium: at all time t ≥ 0, ∑

~Fext(t) = ~0 .

The cell being an active system, macroscopic forces that apply can be either passive or active. In this case
appear

→ a passive force: the friction force exerted by the substrate on the cell due to motion, that writes
~f = −γ~Vt, with γ the global friction coefficient,

→ active forces related to the protrusion process. Indeed, a complex internal activity gives rise to forces in
the body of the cell. Filopodial protrusions can be considered as good readouts [2]. As a consequence,
in the following, only filopodial forces will be considered. Note that at this scale, the formation of
filopodia is discontinuous in time.

Combining these information, we get:

γ ~Vt =

Nt∑
i=1

~Fi(t), (1)

where Nt is the number of filopodia adhering on the substrate at time t, and ( ~Fi(t))i the filopodial forces. The
cell motion is then entirely described by the protrusions.

Hypothesis 2.1. Each filopodial force vector is unitary and constant in time.
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Now, denoting θi = arg( ~Fi), one can write

~Fi(t) =

(
cos(θi)
sin(θi)

)
.

Modelling cell motion then accounts to modelling the time evolution of the filopodial population in terms of
individual orientation.

2.2. Protrusion model

Each filopodium is characterized by a quantitative parameter, its orientation θ ∈ [0, 2π). Therefore, we use a
measure valued process for the stochastic evolution of the set of filopodia, as in ecological population models [4].
Let us denote MF (χ) the set of positive finite measures on χ = [0, 2π], equipped with the weak topology.
Notice that as χ is compact, weak and vague topologies onMF (χ) coincide. WriteM for the subset ofMF (χ)
composed of all finite point measures. Then, a filopodium of orientation θ is described by a Dirac measure δθ
on χ, and the whole population by

νt =

Nt∑
i=1

δθi ∈M.

For any measurable function f on χ and any µ ∈ MF (χ), we have < µ, f >=
∫
χ
f(θ)µ(dθ) . In particular,

< νt, f >=
∑Nt
i=1 f(θi), and the population size corresponds to Nt =< νt, 1 >. A simple way to express the

velocity equation (1) together with hypothesis (2.1) is to write

γ ~Vt =

(
< νt, cos >
< νt, sin >

)
.

The cell motion is entirely described by a measure-valued markovian jump process (νt)t, as in adaptive
stuctured population models. We describe now the different events arising.

• The basic dynamics arising is the isotropic appearance of filopodia. It is responsible for the sponta-
neous activity that is observed experimentally. We write c for the creation rate.

• Each filopodium ends up disappearing: the disappearance or death rate is denoted by d constant.
• Polarisation is characterized by a morphological and functional asymmetry visible both on cell shape

and at the microscopic scale [3, 8]. Here, we use the mesoscopic scale of the model to account for
polarisation by its feedback on the protrusive activity. Two phenomena have to be distinguished:
→ The formation of a protrusion is induced by several microscopic regulators and generates a local

positive feedback on the protrusive machinery. Following that, we assume that each filopodium is
able to reproduce. Denote r(θi, νt) the individual reproduction rate of a filopodium of orientation
θi.

→ Polarisation is also reinforced by intracellular actin flows, (see [6]). In particular, faster actin
flows favor the formation of protrusions in a single stable configuration. Denote ~u for the space-
averaged actin flow velocity over the cell. As actin flows are inwardly directed, −~u characterizes

the reinforced direction for protrusions. Moreover, we know that ~V = − 1
α ~u, where 1

α depends on
the cell type and the experimental setting. Therefore, we consider a positive coupling between the

reproduction rate and −~u = α~V , imposing a global feedback.
• Reproduction of spatially localized filopodia questions the localization of the new protrusions. An

individual can reproduce to form a filopodium with the same orientation, or it can have a slightly
different location. This phenomenon accounts for the stochastic fluctuations arising in the cell signalling
pathways involved in protrusions. In our model, we describe this using the notion of heredity and
subsequent mutation event for the orientation of the ”offspring”.



ESAIM: PROCEEDINGS AND SURVEYS 59

  0.2

  0.4

  0.6

30

210

60

240

90

270

120

300

150

330

180 0

  0.2

  0.4

  0.6

30

210

60

240

90

270

120

300

150

330

180 0

Figure 2. Circular distribution for θt = π
2 , κ = 1 (left) and κ = 2 (right).

For simplicity, we assume that at each reproduction event, the mutation probability µ is constant. In
the case of a mutant new protrusion, its orientation is determined following a probability distribution
g(z; θi) assumed centered in the parent’s orientation θi, with a constant variance.

The possible events are summed up in the following graph:

Creation (global)
c

Clone
Reproduction (individual) ↗ 1− µ

r(θi, ν) ↘
Mutation −→ Choice of θ

Death (individual) µ g(z; θi)
d

Let us comment on the mathematical features of the model. In the case of no interaction between indi-
viduals, or global feedback, the process (Nt)t simply follows an immigration, birth and death dynamics, and
mathematical information can be derived. In particular, the branching property still holds. This is no longer
the case when adding interactions. For example, if the interaction relies on Vt, then knowing only Nt is not
sufficient and one has to know about the structured quantities (Nθ1 , Nθ2 , ...) at all time.

A choice of reproduction rate and mutation law

As protrusions are located on [0, 2π), it is natural to consider reproduction rates as circular functions. We

chose a reproduction function that is positively correlated to α~Vt to account for polarisation. The idea is to
have a function centered in θt the direction of motion, that gets sharper with increasing vt.

We choose a reproduction rate as a multiple of a circular normal distribution density written

f(θi; ~Vt) =
1

2πI0(κ(||~Vt||))
exp(κ(||~Vt||) cos(θi − arg(~Vt))),

with κ(||~Vt||) ≥ 0 a non decreasing shape parameter, and I0 the 0-order modified Bessel function of the first
kind. Therefore, we denote r(θ, νs) = r∗f(θ; θt, κ).

The mutation law is a circular normal distribution on [0, 2π) of density g(z; θi), centered in θi and with a
constant shape parameter (resp. variance) κ (resp. σ2).

3. Mathematical properties

From now on, we will use the notation C for any constant, that will change from line to line.
We introduce here a stochastic differential equation for (νt)t driven by Point Poisson Measures. We will show

existence and uniqueness of a solution, and prove that it follows the dynamics previously described.
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In order to pick a specific individual in the population, we have to be able to order them or their trait. Indeed,

from the n-uplet (θ1, ..., θN ), one can recover ν =
∑N
i=1 δθi , but from ν it is only possible to know {θ1, ..., θN}.

Definition 3.1. Let us define the function

H = (H1, ...,Hk, ...) : M −→ (χ)
N∗

ν =

n∑
i=1

δθi 7−→ (θσ(1), ..., θσ(n), ...),

with θσ(1) � θσ(2) � ... � θσ(n), for an arbitrary order �. Now, an individual can be picked by its label i, and

the corresponding trait writes Hi(ν) = θσ(i).

Let (Ω,F ,P) be a probability space, and n(di) the counting measure on N∗. We introduce the following
objects:

• ν0 ∈M the finite point measure describing the initial population, eventually equal to the null measure.
It can be chosen stochastic as soon as E[< ν0, 1 >] < +∞.
• M0(ds,dθ,du) a Poisson Point Measure on [0,+∞)× χ× R+, of intensity measure dsdθ du,
• M1(ds,di,du) and M3(ds,di,du) Poisson Point Measures on [0,+∞) × N∗ × R+, both of intensity

measure ds n(di) du,
• M2(ds,di, dθ,du) a Poisson Point Measure on [0,+∞)×N∗×χ×R+, of intensity measure dsn(di)dθdu.

The Poisson Measures are independent. Finally, (Ft)t≥0 denotes the canonical filtration generated by these
objects. Let us construct the (Ft)t≥0-adapted process (νt)t≥0 as the solution of the following SDE: ∀t ≥ 0,

νt = ν0

+

∫ t

0

∫
χ×R+

δθ 1u≤ c
2π

M0(ds,dθ,du)

+

∫ t

0

∫
N∗×R+

δHi(νs) 1i≤Ns 1u≤(1−µ)r(Hi(νs),νs) M1(ds,di,du)

+

∫ t

0

∫
N∗×χ×R+

δθ 1i≤Ns 1u≤µr(Hi(νs),νs)g(θ;Hi(νs))) M2(ds,di,dθ,du)

−
∫ t

0

∫
N∗×R+

δHi(νs) 1i≤Ns 1u≤d M3(ds,di,du).

(2)

In this equation, each term describes a different event. The Poisson Point Measures generate atoms homo-
geneously in time. However, the dynamics we want to describe follows state-dependent rates. Hence, we use
indicator functions to keep only some of the events in order to get the wanted rates. Then, the Dirac measures
correspond to the individuals added to or removed from the population.

Hypothesis 3.2. The reproduction rate is a bounded function:

∃r > 0 such that ∀ν ∈M, ∀(θ, ν) ∈ χ×M, 0 ≤ r(θ, ν) ≤ r.

3.1. Existence and uniqueness

In this part let us prove existence and uniqueness of a solution for equation (2). Recall that Nt =< νt, 1 >.

Proposition 3.3. Assume the boundedness of the reproduction rate (hypothesis 3.2), and that E[N0] < +∞.
Then, the two following properties hold.

(1) There exists a solution ν ∈ D(R+,M(χ)) of equation (2) such that

∀T > 0, E

[
sup
t∈[0,T ]

Nt

]
< E [N0] erT +

c

r
(erT − 1) < +∞ , (3)
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(2) There is strong (pathwise) uniqueness of the solution.

Proof of 3.3. The proof is similar to prop. 2.2.5 and 2.2.6 in [4].

(1) Let T0 = 0, and t ∈ R+. Then, the global jump rate of νt is smaller than c+ (r + d)Nt. Hence one can
P− a.s define the sequence (Tk)k∈N∗ of jumping times, as well as T∞ := limk→+∞ Tk.

Now, by construction, it is P − a.s possible to build ”step-by-step” a solution of equation (2) on
[0, T∞[. Showing existence of a solution (νt)t∈R+

∈ D(R+,M(χ)) amounts to showing that P − a.s,
T∞ = +∞. That is equivalent to saying that there cannot be an infinite number of jumps in a finite
time interval.

• First, we show the control property (3). For n > 0 define the sequence of stopping times (τn)n
by

τn = inf
t≥0
{Nt ≥ n}.

→ Let us show that (τn)n≥0 is a sequence of stopping times for (Ft)t. Denote σt = σ(νs, 0 ≤
s ≤ t) the σ-algebra generated by {νs, 0 ≤ s ≤ t}. Then ∀t ≥ 0, σt ⊆ Ft. For (n,m) ∈ (N∗)2,
notice that

{τn ≤ m} = {inf{t ≥ 0, 〈νt, 1〉 ≥ n} ≤ m}
∈ σm ⊆ Fm,

and (τn)n≥0 is indeed a sequence of stopping times.

→ Now, we prove that for all T < +∞, the quantity E
[
supt∈[0,T∧τn]Nt

]
is bounded

∀n ≥ 0.
For t ∈ R+, using equation (2) and dropping the non-positive term, one has

Nt∧τn = < νt∧τn , 1 >≤ N0 +

∫ t∧τn

0

∫
χ×R+

1u≤cM0(ds,dθ,du)

+

∫ t∧τn

0

∫
N∗×R+

1i≤Ns1u≤(1−µ)r(Hi(νs),νs)M1(ds,di,du)

+

∫ t∧τn

0

∫
N∗×χ×R+

1i≤Ns1u≤µr(Hi(νs),νs)g(θ;Hi(νs))M2(ds,di,dθ,du).

As each integrand is positive, bounded, and integrable with respect to the intensity measure, taking
the expectation and using the Fubini theorem, we can write

E

[
sup

t∈[0,T∧τN ]

Nt

]
≤ E[N0] + E

[∫ T∧τN

0

(
c+

Nt∑
i=1

r(θi, νt)

)
dt

]

≤ E[N0] + cT + r

∫ T

0

E

[
sup

s∈[0,t∧τN ]

Ns

]
dt

leading to the T -dependent bound using the Gronwall inequality.
→ Let us prove that P − a.s, limn→+∞ τn = +∞. If this wasn’t the case, there would exist

M < +∞ and a set AM ⊂ Ω such that P(AM ) > 0, and ∀ω ∈ AM , limn→+∞ τn(ω) < M . By the
Markov inequality, ∀T > M,

E

[
sup

t∈[0,T∧τn]
Nt

]
≥ nP

(
sup

t∈[0,T∧τn]
Nt ≥ n

)
︸ ︷︷ ︸

≥P(AM )>0

,
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which is in contradiction with equation (4).
→ Property (3) is proved by the Fatou lemma:

E

[
sup
t∈[0,T ]

Nt

]
= E

[
lim inf
n→+∞

sup
t∈[0,T∧τn]

Nt

]

≤ lim inf
n→+∞

E

[
sup

t∈[0,T∧τn]
Nt

]
≤ E[N0]erT +

c

r

(
erT − 1

)
< +∞.

• Now, let us show that P− a.s, T∞ = +∞. If this is not the case, then there exists M < +∞
and a set AM ⊂ Ω such that P(AM ) > 0 and ∀w ∈ AM , T∞(ω) < M . Moreover, if the assertion

∀ω ∈ AM , lim
k→+∞

NTk(ω) = +∞, (4)

is true, then we would have

∀N > 0, ∀ω ∈ AM , τN (ω) ≤M,

which contradicts limn→+∞ τn = +∞. As a consequence, if we prove (4), the proposition is proved.
If (4) is not true, there would exist N ′ > 0 and a set B ⊂ AM such that P(B) > 0 and

∀ω ∈ B, ∀k ∈ N, NTk(ω) < N ′.

Then, ∀ω ∈ B, (Tk(ω))k can be seen as the subsequence of a sequence of jumping times (T 1
k (ω))k

of a Point Poisson Process of intensity c + (r + d)N ′. The only accumulation point of (T 1
k (ω))k

being P− a.s +∞, it contradicts the definition of B, and proves (4).
(2) The sequence of jumping times (Tk)k∈N being already defined, we only have to show that (Tk, νTk)k∈N

are uniquely determined by D = (ν0,M0,M1,M2,M3) defined above. But this is clear by construction
of the process.

�

3.2. Markov property

Now, we can show that the solution (νt)t of equation (2) is a Markov process in the Skorohod space
D(R+,MF (χ)) of càdlàg finite measure-valued processes on χ. For that purpose, we introduce ∀ν ∈ M,
Φ :M→ R measurable and bounded, the operator L defined by

LΦ(ν) =

∫
χ

c

2π
[Φ(ν + δθ)− Φ(ν)] dθ

+

∫
χ

(1− µ)r(θ, ν) [Φ(ν + δθ)− Φ(ν)] ν(dθ) (5)

+

∫
χ

µr(θ, ν)

∫
χ

[Φ(ν + δz)− Φ(ν)] g(z; θ)dz ν(dθ)

+

∫
χ

d [Φ(ν − δθ)− Φ(ν)] ν(dθ).

Proposition 3.4. Take (νt)t≥0 the solution of equation (2) with E[< ν0, 1 >] < +∞. Then, (νt)t≥0 is a
Markovian process of infinitesimal generator L.

In particular, this proposition ensures that the law of (νt)t≥0 is independent of the order � involved in (3.1).
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Proof of proposition 3.4. The process (νt)t≥0 ∈ D(R+,M(χ)) is markovian by construction. Now, let N0 <
N < +∞, and consider again the stopping time τN . Let Φ :M→ R be measurable and bounded. As P− a.s
we can write

Φ(νt) = Φ(ν0) +
∑
s≤t

Φ(νs− + (νs − νs−))− Φ(νs−) , (6)

we have

Φ(νt∧τN ) = Φ(ν0) +

∫ t∧τN

0

∫
χ×R+

[Φ(νs− + δθ)− Φ(νs−)]1u≤ c
2π
M0(ds,dθ,du)

+

∫ t∧τN

0

∫
N∗×R+

[
Φ(νs− + δHi(νs− ))− Φ(νs−)

]
1i≤Ns−1u≤(1−µ)r(Hi(νs− ),νs− )M1(ds,di,du)

+

∫ t∧τN

0

∫
N∗×χ×R+

[Φ(νs− + δz)− Φ(νs−)]1i≤Ns−1u≤µr(Hi(νs− ),νs− )g(z;Hi(νs))M2(ds,di,dz,du)

+

∫ t∧τN

0

∫
N∗×R+

[
Φ(νs− − δHi(νs− ))− Φ(νs−)

]
1i≤Ns−1u≤dM3(ds,di,du) .

Again, as all integrands are bounded, we can take expectations to get

E [Φ(νt∧τN )] = E [Φ(ν0)] + E
[∫ t∧τN

0

∫
χ

[Φ(νs− + δθ)− Φ(νs−)]
c

2π
dθds

]

+ E

∫ t∧τN

0

Ns−∑
i=1

[
Φ(νs− + δHi(νs− ))− Φ(νs−)

]
(1− µ)r(Hi(νs−), νs−)ds


+ E

∫ t∧τN

0

Ns−∑
i=1

µr(Hi(νs−), νs−)

∫
χ

[Φ(νs− + δz)− Φ(νs−)] g(z;Hi(νs))dzds


+ E

∫ t∧τN

0

Ns−∑
i=1

[
Φ(νs− − δHi(νs− ))− Φ(νs−)

]
dds

 ,
=: E [Φ(ν0)] + E [ψ(t ∧ τN , ν)] .

On the one hand, ∀t ∈ [0, T ],

‖ ψ(t ∧ τN , ν) ‖∞ ≤ 2T ‖ Φ ‖∞ c+ 2T ‖ Φ ‖∞ (1− µ)rN + 2T ‖ Φ ‖∞ µrN + 2T ‖ Φ ‖∞ dN

≤ CT ‖ Φ ‖∞ (c+ (r + d)N) < +∞.

On the other hand, t 7→ ψ(t ∧ τN , ν) is derivable in t = 0 P− a.s (as ν ∈ D(R+,M(χ))), and for a given ν0,
we have
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∂ψ

∂t
(0, ν0) =

∫
χ

[Φ(ν0 + δθ)− Φ(ν0)]
c

2π
dθ

+

N0∑
i=1

[
Φ(ν0 + δHi(ν0))− Φ(ν0)

]
(1− µ)r(Hi(ν0), ν0)

+

N0∑
i=1

µr(Hi(ν0), ν0)

∫
χ

[Φ(ν0 + δz)− Φ(ν0)] g(z;Hi(ν0))dz

+

N0∑
i=1

[
Φ(ν0 − δHi(ν0))− Φ(ν0)

]
d .

Moreover, ‖ ∂ψ∂t (0, ν0) ‖≤ C ‖ Φ ‖∞ (c+N0(r + d)). Now,

Lφ(ν0) :=
∂E [φ(νt)]

∂t

∣∣∣∣
t=0

=

∫
χ

[Φ(ν0 + δθ)− Φ(ν0)]
c

2π
dθ +

N0∑
i=1

[
Φ(ν0 + δHi(ν0))− Φ(ν0)

]
(1− µ)r(Hi(ν0), ν0)

+

N0∑
i=1

µr(Hi(ν0), ν0)

∫
χ

[Φ(ν0 + δz)− Φ(ν0)] g(z;Hi(ν0))dz

+

N0∑
i=1

[
Φ(ν0 − δHi(ν0))− Φ(ν0)

]
d,

or equivalently

Lφ(ν0) =

∫
χ

[Φ(ν0 + δθ)− Φ(ν0)]
c

2π
dθ +

N0∑
i=1

[
Φ(ν0 + δHi(ν0))− Φ(ν0)

]
r(Hi(ν0), ν0)

+

N0∑
i=1

[
Φ(ν0 − δHi(ν0))− Φ(ν0)

]
d

+ µ

N0∑
i=1

r(Hi(ν0), ν0)

(∫
χ

Φ(ν0 + δz)g(z;Hi(ν0))dz − Φ(ν0 + δHi(ν0))

)
.

�

4. Numerical simulations

The construction of the process (νt)t furnishes directly an algorithm for simulations. We proceed as follows:
start with the population measure νk at time tk, for a particle located at Xk.

Time of next event: let τ = c+ < νk, r + d > denote the global jump rate of the process. Then, the
time of the next event writes tk+1 := tk + ∆t, where

∆t ∼ Exp(τ) .

Nature of the event: what happens at time tk+1 is determined as follows:
• creation of a protrusion occurs with probability c

τ . Its orientation is chosen uniformly on [0, 2π).
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• reproduction of the protrusion number i occurs with probability r(Hi(νk),νk)
τ . Then,

→ with probability (1− µ), the new protrusion has orientation Hi(νk),
→ with probability µ, its orientation is chosen with the realization of a random variable having

a probability density g(·;Hi(νk), νk).
• protrusion number i disappears with probability d

τ .
The measure νk+1 is then obtained from νk and the information of the event occuring at time tk+1.

Updates: the particle’s new position is

Xk+1 = Xk + ∆t Vk ,

while Vk+1 = 1
γ

(
< νk+1, cos >
< νk+1, sin >

)
.

One only has to start again to get a trajectory over time.

4.1. Results

Let us now present the numerical trajectories we obtained, that are displayed in figures 3 and 4. Recall that
polarisation is quantified by −αv, so that the larger α is, the more concentrated in the direction of motion the
protrusions are formed. We observe indeed different types of trajectories for varying α, from Brownian-like to
persistent. In figure 3, the mutation probability is µ = 0.2, whereas it is µ = 0.8 in figure 4. We observe that
the territory exploration is significantly lower for a higher mutation probability. This shows that the mutation
events can not be neglected.
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Figure 3. Numerical trajectories obtained for a varying polarisation parameter α. Parameters:
T = 100, ∆t = 10−4, c = d = 1, r = 0.95, γ = 90, µ = 0.2. Mutation concentration parameter
k = 10.
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Figure 4. Numerical trajectories obtained for a varying polarisation parameter α. Parameters:
T = 100, ∆t = 10−4, c = d = 1, r = 0.95, γ = 90, µ = 0.8.


