The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Integrated machine learning based groundwater quality prediction through groundwater quality index for drinking purposes in a semi-arid river basin of south India
Validating laboratory predictions of soil rewetting respiration pulses using field data
Xiankun Li, Marleen Pallandt, Dilip Naidu, Johannes Rousk, Gustaf Hugelius and Stefano Manzoni Biogeosciences 22(11) 2691 (2025) https://doi.org/10.5194/bg-22-2691-2025
Multiomic random forest toxicity modeling of radiation esophagitis
Saurabh S. Nair, Ramon M. Salazar, Ting Xu, Alexandra O. Leone, Zhongxing Liao, Laurence E. Court and Joshua S. Niedzielski Physics and Imaging in Radiation Oncology 36 100838 (2025) https://doi.org/10.1016/j.phro.2025.100838
Interpretation of a Machine Learning Model for Short-Term High Streamflow Prediction
Establishing a machine-learning-supported tool for the identification of necessary building-strengthening measures in the design phase of urban tunnel projects
Unravelling the role of digital soil mapping to assess the soil subgroup development in northwestern Iran
Behzad Mohammadhosseini Sagayesh, Ali Asghar Jafarzadeh, Farzin Shahbazi and Asghar Farajnia Modeling Earth Systems and Environment 11(5) (2025) https://doi.org/10.1007/s40808-025-02564-z
Hourly surface nitrogen dioxide retrieval from GEMS tropospheric vertical column densities: benefit of using time-contiguous input features for machine learning models
Janek Gödeke, Andreas Richter, Kezia Lange, Peter Maaß, Hyunkee Hong, Hanlim Lee and Junsung Park Atmospheric Measurement Techniques 18(15) 3747 (2025) https://doi.org/10.5194/amt-18-3747-2025
Machine learning models based on hyperspectral imaging for pre-harvest tomato fruit quality monitoring
Interpreting machine learning models based on SHAP values in predicting suspended sediment concentration
Houda Lamane, Latifa Mouhir, Rachid Moussadek, Bouamar Baghdad, Ozgur Kisi and Ali El Bilali International Journal of Sediment Research 40(1) 91 (2025) https://doi.org/10.1016/j.ijsrc.2024.10.002
Inverse modeling of untethered electromagnetic actuators using machine learning
Bias reduction of CFSR data with random forest for applications in water resources modelling in Ogun River
Oluwatobi Aiyelokun, Gbenga Ogunsanwo, Quoc Bao Pham, Oluwadamilola Salau and Precious Eguagie-Suyi Hydrological Sciences Journal 70(8) 1308 (2025) https://doi.org/10.1080/02626667.2025.2467337
Modeling the spatial distribution and abundance of deep‐water red shrimps in the Mediterranean Sea: a machine learning approach
Elena Catucci, Diego Panzeri, Simone Libralato, Gianpiero Cossarini, Germana Garofalo, Irida Maina, Stefanos Kavadas, Federico Quattrocchi, Giulia Cipriano, Roberto Carlucci, Sergio Vitale, Chryssi Mytilineou, Fabio Fiorentino and Tommaso Russo Fisheries Research 281 107257 (2025) https://doi.org/10.1016/j.fishres.2024.107257
Micronutrient levels of global tropical reef fish communities differ from fisheries capture
Conor Waldock, Eva Maire, Camille Albouy, Vania Andreoli, Maria Beger, Thomas Claverie, Katie L. Cramer, David A. Feary, Sebastian C. A. Ferse, Andrew Hoey, Nicolas Loiseau, M. Aaron MacNeil, Matthew McLean, Camille Mellin, Simon Ahouansou Montcho, Maria Lourdes Palomares, Santiago de la Puente, Mark Tupper, Shaun Wilson, Laure Velez, Jessica Zamborain‐Mason, Dirk Zeller, David Mouillot and Loïc Pellissier People and Nature 7(1) 32 (2025) https://doi.org/10.1002/pan3.10736
Data Augmentation and Machine Learning algorithms for multi-class imbalanced morphometrics data of stingless bees
Predicting the high-strain-rate deformation behavior and constructing processing maps of 304L stainless steel through machine learning and deep learning
M. Ghaffari Farid, H.R. Abedi, R. Ghasempour, A. Taylor, S. Khoddam and P.D. Hodgson Journal of Materials Research and Technology 36 7507 (2025) https://doi.org/10.1016/j.jmrt.2025.05.009
Measuring Affective State: Subject-Dependent and -Independent Prediction Based on Longitudinal Multimodal Sensing
Lea Berkemeier, Wim Kamphuis, Anne-Marie Brouwer, Herman de Vries, Maarten Schadd, Jan Ubbo van Baardewijk, Hilbrand Oldenhuis, Rudolf Verdaasdonk and Lisette van Gemert-Pijnen IEEE Transactions on Affective Computing 16(2) 827 (2025) https://doi.org/10.1109/TAFFC.2024.3474098
Learning Adsorption Patterns on Amorphous Surfaces
Field validation of NDVI to identify crop phenological signatures
Muhammad Tousif Bhatti, Hammad Gilani, Muhammad Ashraf, Muhammad Shahid Iqbal and Sarfraz Munir Precision Agriculture 25(5) 2245 (2024) https://doi.org/10.1007/s11119-024-10165-6
Unlocking the full potential of Sentinel-1 for flood detection in arid regions
Shagun Garg, Antara Dasgupta, Mahdi Motagh, Sandro Martinis and Sivasakthy Selvakumaran Remote Sensing of Environment 315 114417 (2024) https://doi.org/10.1016/j.rse.2024.114417
Predicting the Effect of RSW Parameters on the Shear Force and Nugget Diameter of Similar and Dissimilar Joints Using Machine Learning Algorithms and Multilayer Perceptron
Model-Based Prediction for Small Domains Using Covariates: A Comparison of Four Methods
Victoire Michal, Jon Wakefield, Alexandra M Schmidt, Alicia Cavanaugh, Brian E Robinson and Jill Baumgartner Journal of Survey Statistics and Methodology 12(5) 1489 (2024) https://doi.org/10.1093/jssam/smae032
Predictors of healthy physiological aging across generations in a 30-year population-based cohort study: the Doetinchem Cohort Study
Modeling the Combined Effect of Fulvic Acid, Effective Microorganisms and Micro-Carbon on Olive Yield
Waleed Mohammad Elhanafy F, Younes Mohammad Rashad and Omar Maghawry Ibrahim Asian Journal of Plant Sciences 22(2) 394 (2023) https://doi.org/10.3923/ajps.2023.394.405
On exploring bivariate and trivariate maps as visualization tools for spatial associations in digital soil mapping: A focus on soil properties
Chemical Descriptors for a Large-Scale Study on Drop-Weight Impact Sensitivity of High Explosives
Frank W. Marrs, Jack V. Davis, Alexandra C. Burch, et al. Journal of Chemical Information and Modeling 63(3) 753 (2023) https://doi.org/10.1021/acs.jcim.2c01154
Improving Sampling Probability Definitions with Predictive Algorithms
Matthew Jannetti, Amy Carroll-Scott, Erikka Gilliam, Irene Headen, Maggie Beverly and Félice Lê-Scherban Field Methods 35(2) 137 (2023) https://doi.org/10.1177/1525822X221113181
Analysis of the Frictional Performance of AW-5251 Aluminium Alloy Sheets Using the Random Forest Machine Learning Algorithm and Multilayer Perceptron
Tomasz Trzepieciński, Sherwan Mohammed Najm, Omar Maghawry Ibrahim and Marek Kowalik Materials 16(15) 5207 (2023) https://doi.org/10.3390/ma16155207
Model-Assisted Estimation Through Random Forests in Finite Population Sampling
AI-based identification of therapeutic agents targeting GPCRs: introducing ligand type classifiers and systems biology
Jonas Goßen, Rui Pedro Ribeiro, Dirk Bier, Bernd Neumaier, Paolo Carloni, Alejandro Giorgetti and Giulia Rossetti Chemical Science 14(32) 8651 (2023) https://doi.org/10.1039/D3SC02352D
Uncovering the effects of Urmia Lake desiccation on soil chemical ripening using advanced mapping techniques
Ore genesis of the Laguhe Au deposit, West Qinling, China: Evidence from sulfide geochemistry and machine learning
Feifan Xu, Fan Yang, Emmanuel John M. Carranza, Kangning Li, Shuai Zhang, Qingyan Tang and Dengbang Li Ore Geology Reviews 163 105767 (2023) https://doi.org/10.1016/j.oregeorev.2023.105767
Development and evaluation of frameworks for real-time bus passenger occupancy prediction
Tile-Based Random Forest Analysis for Analyte Discovery in Balanced and Unbalanced GC × GC-TOFMS Data Sets
Meriem Gaida, Caitlin N. Cain, Robert E. Synovec, Jean-François Focant and Pierre-Hugues Stefanuto Analytical Chemistry 95(36) 13519 (2023) https://doi.org/10.1021/acs.analchem.3c01872
Application of random forest (RF) for flood levels prediction in Lower Ogun Basin, Nigeria
Random Forest Algorithm for the Strength Prediction of Geopolymer Stabilized Clayey Soil
Husein Ali Zeini, Duaa Al-Jeznawi, Hamza Imran, Luís Filipe Almeida Bernardo, Zainab Al-Khafaji and Krzysztof Adam Ostrowski Sustainability 15(2) 1408 (2023) https://doi.org/10.3390/su15021408
Predicting spatial distribution of stable isotopes in precipitation by classical geostatistical- and machine learning methods
Dániel Erdélyi, István Gábor Hatvani, Hyeongseon Jeon, Matthew Jones, Jonathan Tyler and Zoltán Kern Journal of Hydrology 617 129129 (2023) https://doi.org/10.1016/j.jhydrol.2023.129129
Digital assessments of soil organic carbon storage using digital maps provided by static and dynamic environmental covariates
Fatemeh Rahbar Alam Shirazi, Farzin Shahbazi, Hossein Rezaei and Asim Biswas Soil Use and Management 39(2) 948 (2023) https://doi.org/10.1111/sum.12900
Influencing Factors and Clustering Characteristics of COVID-19: A Global Analysis
Tropical cyclone full track simulation in the western North Pacific based on random forests
Mingfeng Huang, Qing Wang, Renzhi Jing, Wenjuan Lou, Yi Hong and Lizhong Wang Journal of Wind Engineering and Industrial Aerodynamics 228 105119 (2022) https://doi.org/10.1016/j.jweia.2022.105119
Pietro Mastro, Domenico Cimini, Filomena Romano, Elisabetta Ricciardelli, Francesco Di Paola, Guido Masiello, Carmine Serio, Adolfo Comerón, Evgueni I. Kassianov, Klaus Schäfer, Richard H. Picard, Konradin Weber and Upendra N. Singh 29 (2022) https://doi.org/10.1117/12.2642874
Moisés R. Santos, Douglas D. C. Braz, André C. P. L. F. Carvalho, Renato Tinós, Marcos B. S. Paula, Gabriel Doretto, Ewerton Guarnier, Donato Silva Filho, Danilo Y. Suiama, Lorena E. Ferreira and José E. Carmo Júnior 1 (2022) https://doi.org/10.1109/LA-CCI54402.2022.9981846
Nonlinear Effects of the Neighborhood Environments on Residents’ Mental Health
Lin Zhang, Suhong Zhou, Lanlan Qi and Yue Deng International Journal of Environmental Research and Public Health 19(24) 16602 (2022) https://doi.org/10.3390/ijerph192416602
Estimation of Eucalyptus productivity using efficient artificial neural network
Ricardo Rodrigues de Oliveira Neto, Helio Garcia Leite, José Marinaldo Gleriani and Bogdan M. Strimbu European Journal of Forest Research 141(1) 129 (2022) https://doi.org/10.1007/s10342-021-01431-7
Improving nonconformity responsibility decisions: a semi-automated model based on CRISP-DM
IoT-based platform for automated IEQ spatio-temporal analysis in buildings using machine learning techniques
Francisco Troncoso-Pastoriza, Miguel Martínez-Comesaña, Ana Ogando-Martínez, Javier López-Gómez, Pablo Eguía-Oller and Lara Febrero-Garrido Automation in Construction 139 104261 (2022) https://doi.org/10.1016/j.autcon.2022.104261
Random forest-based modeling of stream nutrients at national level in a data-scarce region
Mobile‐aided screening system for proliferative diabetic retinopathy
Rahma Boukadida, Yaroub Elloumi, Mohamed Akil and Mohamed Hedi Bedoui International Journal of Imaging Systems and Technology 31(3) 1638 (2021) https://doi.org/10.1002/ima.22547
MODIS aerosol optical depth retrieval based on random forest approach
Integration of Sentinel optical and radar data for mapping smallholder coffee production systems in Vietnam
Gina Maskell, Abel Chemura, Huong Nguyen, Christoph Gornott and Pinki Mondal Remote Sensing of Environment 266 112709 (2021) https://doi.org/10.1016/j.rse.2021.112709
Prediction of groundwater quality using efficient machine learning technique
Mapping and Quantification of the Dwarf Eelgrass Zostera noltei Using a Random Forest Algorithm on a SPOT 7 Satellite Image
Salma Benmokhtar, Marc Robin, Mohamed Maanan and Hocein Bazairi ISPRS International Journal of Geo-Information 10(5) 313 (2021) https://doi.org/10.3390/ijgi10050313