The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
L. Boudin , D. Götz , B. Grec
ESAIM: Proc., 30 (2010) 90-103
Published online: 2010-12-07
This article has been cited by the following article(s):
14 articles
Perturbative Cauchy theory for a flux-incompressible Maxwell-Stefan system
Andrea Bondesan and Marc Briant Discrete and Continuous Dynamical Systems 42 (6) 2747 (2022) https://doi.org/10.3934/dcds.2021210
Augmented saddle-point formulation of the steady-state Stefan–Maxwell diffusion problem
Alexander Van-Brunt, Patrick E Farrell and Charles W Monroe IMA Journal of Numerical Analysis 42 (4) 3272 (2022) https://doi.org/10.1093/imanum/drab067
Partial Hölder regularity for solutions of a class of cross-diffusion systems with entropy structure
Marcel Braukhoff, Claudia Raithel and Nicola Zamponi Journal de Mathématiques Pures et Appliquées (2022) https://doi.org/10.1016/j.matpur.2022.07.006
An Entropy Structure Preserving Space-Time Formulation for Cross-Diffusion Systems: Analysis and Galerkin Discretization
Marcel Braukhoff, Ilaria Perugia and Paul Stocker SIAM Journal on Numerical Analysis 60 (1) 364 (2022) https://doi.org/10.1137/20M1360086
Stability of the Maxwell–Stefan System in the Diffusion Asymptotics of the Boltzmann Multi-species Equation
Andrea Bondesan and Marc Briant Communications in Mathematical Physics 382 (1) 381 (2021) https://doi.org/10.1007/s00220-021-03976-5
Compressible multicomponent flow in porous media with Maxwell‐Stefan diffusion
Lukas Ostrowski and Christian Rohde Mathematical Methods in the Applied Sciences 43 (7) 4200 (2020) https://doi.org/10.1002/mma.6185
On the formal derivation of the reactive Maxwell-Stefan equations from the kinetic theory
Benjamin Anwasia, Patrícia Gonçalves and Ana Jacinta Soares EPL (Europhysics Letters) 129 (4) 40005 (2020) https://doi.org/10.1209/0295-5075/129/40005
Maxwell-Stefan-theory-based lattice Boltzmann model for diffusion in multicomponent mixtures
Zhenhua Chai, Xiuya Guo, Lei Wang and Baochang Shi Physical Review E 99 (2) (2019) https://doi.org/10.1103/PhysRevE.99.023312
Diffusing uphill with James Clerk Maxwell and Josef Stefan
Rajamani Krishna Chemical Engineering Science 195 851 (2019) https://doi.org/10.1016/j.ces.2018.10.032
Scaling limit of two-component interacting Brownian motions
Insuk Seo The Annals of Probability 46 (4) (2018) https://doi.org/10.1214/17-AOP1220
On the Maxwell–Stefan diffusion limit for a mixture of monatomic gases
Harsha Hutridurga and Francesco Salvarani Mathematical Methods in the Applied Sciences 40 (3) 803 (2017) https://doi.org/10.1002/mma.4013
Maxwell–Stefan diffusion asymptotics for gas mixtures in non-isothermal setting
Harsha Hutridurga and Francesco Salvarani Nonlinear Analysis 159 285 (2017) https://doi.org/10.1016/j.na.2017.03.019
Applicability of the linearized theory of the Maxwell–Stefan equations
Paul S. Weber and Dieter Bothe AIChE Journal 62 (8) 2929 (2016) https://doi.org/10.1002/aic.15317
Uphill diffusion in multicomponent mixtures
Rajamani Krishna Chemical Society Reviews 44 (10) 2812 (2015) https://doi.org/10.1039/C4CS00440J