Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Input-output space-filling representative points for clustering, modeling, and estimation

A.M. Elsawah, Barkahoum Laala and Gajendra K. Vishwakarma
Journal of Computational and Applied Mathematics 474 116928 (2026)
https://doi.org/10.1016/j.cam.2025.116928

Mean Squared Error Representative Points of Pareto Distributions and Their Estimation

Xinyang Li and Xiaoling Peng
Entropy 27 (3) 249 (2025)
https://doi.org/10.3390/e27030249

Large-scale deep learning based face recognition utilizing vector database technologies: current trends, challenges, and solutions

Abdalbasit Qadir, Bryar A. Hassan and Hozan Khalid
International Journal of Computers and Applications 1 (2025)
https://doi.org/10.1080/1206212X.2025.2537892

Asymptotic quantization of measures on Riemannian manifolds via covering growth estimates

Ata Deniz Aydın and Mikaela Iacobelli
Advances in Mathematics 474 110311 (2025)
https://doi.org/10.1016/j.aim.2025.110311

A new class of moment-constrained mean square error representative samples for continuous distributions

Xinyang Li, Ping He, Moyuan Huang and Xiaoling Peng
Journal of Statistical Computation and Simulation 1 (2025)
https://doi.org/10.1080/00949655.2025.2485290

Learning the random variables in Monte Carlo simulations with stochastic gradient descent: Machine learning for parametric PDEs and financial derivative pricing

Sebastian Becker, Arnulf Jentzen, Marvin S. Müller and Philippe von Wurstemberger
Mathematical Finance 34 (1) 90 (2024)
https://doi.org/10.1111/mafi.12405

A new Kolmogorov-Smirnov test based on representative points in the exponential distribution family

Yangyi Zhang, Sirao Wang, Xiao Ke and Huajun Ye
Journal of Statistical Computation and Simulation 94 (15) 3391 (2024)
https://doi.org/10.1080/00949655.2024.2385687

Quantization of stochastic volatility models: Numerical tests and an open source implementation

Alessandro Fina, Alessandro Gnoatto and Athena Picarelli
Mathematics and Computers in Simulation 225 29 (2024)
https://doi.org/10.1016/j.matcom.2024.04.030

A Sampling Criterion for Constrained Bayesian Optimization with Uncertainties

Reda El Amri, Rodolphe Le Riche, Céline Helbert, Christophette Blanchet-Scalliet and Sébastien Da Veiga
The SMAI Journal of computational mathematics 9 285 (2023)
https://doi.org/10.5802/smai-jcm.102

Quantization dimensions of compactly supported probability measures via Rényi dimensions

Marc Kesseböhmer, Aljoscha Niemann and Sanguo Zhu
Transactions of the American Mathematical Society 376 (7) 4661 (2023)
https://doi.org/10.1090/tran/8863

Limiting behavior of the gap between the largest two representative points of statistical distributions

Long-Hao Xu, Kai-Tai Fang and Jianxin Pan
Communications in Statistics - Theory and Methods 52 (10) 3290 (2023)
https://doi.org/10.1080/03610926.2021.1970772

Reweighting samples under covariate shift using a Wasserstein distance criterion

Julien Reygner and Adrien Touboul
Electronic Journal of Statistics 16 (1) (2022)
https://doi.org/10.1214/21-EJS1974

Millimeter Wave Beamforming Codebook Design via Learning Channel Covariance Matrices Over Riemannian Manifolds

Imtiaz Nasim and Ahmed S. Ibrahim
IEEE Access 10 119617 (2022)
https://doi.org/10.1109/ACCESS.2022.3222032

Three kinds of discrete approximations of statistical multivariate distributions and their applications

Jun Yang, Ping He and Kai-Tai Fang
Journal of Multivariate Analysis 188 104829 (2022)
https://doi.org/10.1016/j.jmva.2021.104829

Machine Learning, Optimization, and Data Science

Shun Matsuura and Hiroshi Kurata
Lecture Notes in Computer Science, Machine Learning, Optimization, and Data Science 13163 430 (2022)
https://doi.org/10.1007/978-3-030-95467-3_31

Adaptive force biasing algorithms: New convergence results and tensor approximations of the bias

Virginie Ehrlacher, Tony Lelièvre and Pierre Monmarché
The Annals of Applied Probability 32 (5) (2022)
https://doi.org/10.1214/21-AAP1775

Brain Inspired Cortical Coding Method for Fast Clustering and Codebook Generation

Meric Yucel, Serdar Bagis, Ahmet Sertbas, Mehmet Sarikaya and Burak Ustundag
Entropy 24 (11) 1678 (2022)
https://doi.org/10.3390/e24111678

Optimal dual quantizers of 1D log-concave distributions: Uniqueness and Lloyd like algorithm

Benjamin Jourdain and Gilles Pagès
Journal of Approximation Theory 267 105581 (2021)
https://doi.org/10.1016/j.jat.2021.105581

Determinantal Point Processes for Image Processing

Claire Launay, Agnès Desolneux and Bruno Galerne
SIAM Journal on Imaging Sciences 14 (1) 304 (2021)
https://doi.org/10.1137/20M1327306

Weak and strong error analysis of recursive quantization: a general approach with an application to jump diffusions

Gilles Pagès and Abass Sagna
IMA Journal of Numerical Analysis 41 (4) 2668 (2021)
https://doi.org/10.1093/imanum/draa033

New weak error bounds and expansions for optimal quantization

Vincent Lemaire, Thibaut Montes and Gilles Pagès
Journal of Computational and Applied Mathematics 371 112670 (2020)
https://doi.org/10.1016/j.cam.2019.112670

Handbook of Research on Multimedia Cyber Security

Reinaldo Padilha França, Yuzo Iano, Ana Carolina Borges Monteiro and Rangel Arthur
Advances in Information Security, Privacy, and Ethics, Handbook of Research on Multimedia Cyber Security 1 (2020)
https://doi.org/10.4018/978-1-7998-2701-6.ch001

Quantization meets Fourier: a new technology for pricing options

Giorgia Callegaro, Lucio Fiorin and Martino Grasselli
Annals of Operations Research 282 (1-2) 59 (2019)
https://doi.org/10.1007/s10479-018-3048-z

Quantization and clustering on Riemannian manifolds with an application to air traffic analysis

Alice Le Brigant and Stéphane Puechmorel
Journal of Multivariate Analysis 173 685 (2019)
https://doi.org/10.1016/j.jmva.2019.05.008

A backward Monte Carlo approach to exotic option pricing

G. BORMETTI, G. CALLEGARO, G. LIVIERI and A. PALLAVICINI
European Journal of Applied Mathematics 29 (1) 146 (2018)
https://doi.org/10.1017/S0956792517000079

Improved error bounds for quantization based numerical schemes for BSDE and nonlinear filtering

Gilles Pagès and Abass Sagna
Stochastic Processes and their Applications 128 (3) 847 (2018)
https://doi.org/10.1016/j.spa.2017.05.009

Uniform decomposition of probability measures: quantization, clustering and rate of convergence

Julien Chevallier
Journal of Applied Probability 55 (4) 1037 (2018)
https://doi.org/10.1017/jpr.2018.69

Fast Quantization of Stochastic Volatility Models

Ralph Rudd, Thomas A McWalter, Joerg Kienitz and Eckhard Platen
SSRN Electronic Journal (2017)
https://doi.org/10.2139/ssrn.2956168

Quantization Meets Fourier: A New Technology for Pricing Options

Giorgia Callegaro, Lucio Fiorin and Martino Grasselli
SSRN Electronic Journal (2017)
https://doi.org/10.2139/ssrn.2951755

Pointwise Convergence of the Lloyd I Algorithm in Higher Dimension

Gilles Pagès and Jun Yu
SIAM Journal on Control and Optimization 54 (5) 2354 (2016)
https://doi.org/10.1137/151005622

A Backward Monte Carlo Approach to Exotic Option Pricing

Giacomo Bormetti, Giorgia Callegaro, Giulia Livieri and Andrea Pallavicini
SSRN Electronic Journal (2015)
https://doi.org/10.2139/ssrn.2686115

Pricing and Calibration in Local Volatility Models Via Fast Quantization

Giorgia Callegaro, Lucio Fiorin and Martino Grasselli
SSRN Electronic Journal (2014)
https://doi.org/10.2139/ssrn.2495829