Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Discontinuous Galerkin Methods for the Vlasov–Stokes System

Harsha Hutridurga, Krishan Kumar and Amiya K. Pani
Computational Methods in Applied Mathematics 25 (1) 93 (2025)
https://doi.org/10.1515/cmam-2023-0243

Global existence and time decay rate of classical solutions to a hybrid Vlasov-Fokker-Planck-MHD equations

Peng Jiang and Jiayu He
Journal of Mathematical Analysis and Applications 543 (2) 129004 (2025)
https://doi.org/10.1016/j.jmaa.2024.129004

The global existence of strong solutions to thermomechanical Cucker-Smale-Stokes equations in the whole domain

Weiyuan Zou
Acta Mathematica Scientia 44 (3) 887 (2024)
https://doi.org/10.1007/s10473-024-0307-8

The small deborah number limit for the fluid-particle flows: Incompressible case

Zhendong Fang, Kunlun Qi and Huanyao Wen
Mathematical Models and Methods in Applied Sciences 34 (12) 2265 (2024)
https://doi.org/10.1142/S0218202524500489

Energy estimates and hypocoercivity analysis for a multi-phase Navier-Stokes-Vlasov-Fokker-Planck system with uncertainty

Shi Jin and Yiwen Lin
Journal of Differential Equations 400 110 (2024)
https://doi.org/10.1016/j.jde.2024.04.013

Shock profiles for hydrodynamic models for fluid-particles flows in the flowing regime

Thierry Goudon, Pauline Lafitte and Corrado Mascia
Physica D: Nonlinear Phenomena 470 134357 (2024)
https://doi.org/10.1016/j.physd.2024.134357

On the Global Existence for a Class of Compressible Non-Newtonian Fluids with Inhomogeneous Boundary Data

J. Muhammad
Russian Journal of Mathematical Physics 31 (2) 276 (2024)
https://doi.org/10.1134/S1061920824020109

Optimal well-posedness for the pressureless Euler–Navier–Stokes system

Xiaoping Zhai, Yiren Chen, Yongsheng Li and Yongye Zhao
Journal of Mathematical Physics 64 (5) (2023)
https://doi.org/10.1063/5.0136429

On the dynamics of charged particles in an incompressible flow: From kinetic-fluid to fluid–fluid models

Young-Pil Choi and Jinwook Jung
Communications in Contemporary Mathematics 25 (07) (2023)
https://doi.org/10.1142/S0219199722500122

Global weak solutions to the Vlasov–Poisson–Fokker–Planck–Navier–Stokes system

Li Chen, Fucai Li, Yue Li and Nicola Zamponi
Mathematical Methods in the Applied Sciences 46 (2) 2729 (2023)
https://doi.org/10.1002/mma.8672

Global existence and large time behaviour for the pressureless Euler–Naver–Stokes system in ℝ3

Shanshan Guo, Guochun Wu and Yinghui Zhang
Proceedings of the Royal Society of Edinburgh: Section A Mathematics 1 (2023)
https://doi.org/10.1017/prm.2023.16

Global weak solutions to the compressible Cucker–Smale–Navier–Stokes system in a bounded domain

Li Chen, Yue Li and Nicola Zamponi
Nonlinear Analysis 232 113257 (2023)
https://doi.org/10.1016/j.na.2023.113257

Temporal decays and asymptotic behaviors for a Vlasov equation with a flocking term coupled to incompressible fluid flow

Young-Pil Choi, Kyungkeun Kang, Hwa Kil Kim and Jae-Myoung Kim
Nonlinear Analysis: Real World Applications 63 103410 (2022)
https://doi.org/10.1016/j.nonrwa.2021.103410

Global Classical Solution to the Navier–Stokes–Vlasov Equations with Large Initial Data and Reflection Boundary Conditions

Peng Jiang
Journal of Mathematical Fluid Mechanics 24 (1) (2022)
https://doi.org/10.1007/s00021-021-00635-6

Global Bounded Weak Entropy Solutions to the Euler--Vlasov Equations in Fluid-Particle System

Wentao Cao and Peng Jiang
SIAM Journal on Mathematical Analysis 53 (4) 3958 (2021)
https://doi.org/10.1137/20M138630X

Global weak solutions for a Vlasov–Fokker–Planck/Navier–Stokes system with nonhomogeneous boundary data

Yue Li
Zeitschrift für angewandte Mathematik und Physik 72 (2) (2021)
https://doi.org/10.1007/s00033-021-01488-9

On the Cauchy Problem for the Pressureless Euler–Navier–Stokes System in the Whole Space

Young-Pil Choi and Jinwook Jung
Journal of Mathematical Fluid Mechanics 23 (4) (2021)
https://doi.org/10.1007/s00021-021-00624-9

Global well-posedness of one-dimensional compressible Navier-Stokes-Vlasov system

Hai-Liang Li and Ling-Yun Shou
Journal of Differential Equations 280 841 (2021)
https://doi.org/10.1016/j.jde.2021.01.040

Asymptotic analysis for a Vlasov–Fokker–Planck/Navier–Stokes system in a bounded domain

Young-Pil Choi and Jinwook Jung
Mathematical Models and Methods in Applied Sciences 31 (11) 2213 (2021)
https://doi.org/10.1142/S0218202521500482

Asymptotic analysis for a homogeneous bubbling regime Vlasov–Fokker–Planck/Navier–Stokes system

Joshua Ballew
Zeitschrift für angewandte Mathematik und Physik 71 (4) (2020)
https://doi.org/10.1007/s00033-020-01359-9

Global weak solutions to a Vlasov‐Fokker‐Planck/compressible non‐Newtonian fluid system of equations

Huan Zhu, Li Fang, Jan Muhammad and Zhenhua Guo
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 100 (4) (2020)
https://doi.org/10.1002/zamm.201900091

Global existence and large time behavior of classical solutions to the Euler-Maxwell-Vlasov-Fokker-Planck system

Peng Jiang
Journal of Differential Equations 268 (12) 7715 (2020)
https://doi.org/10.1016/j.jde.2019.11.085

Global existence of weak solutions to the incompressible Vlasov–Navier–Stokes system coupled to convection–diffusion equations

Laurent Boudin, David Michel and Ayman Moussa
Mathematical Models and Methods in Applied Sciences 30 (08) 1485 (2020)
https://doi.org/10.1142/S0218202520500293

Global well-posedness and optimal large-time behavior of strong solutions to the non-isentropic particle-fluid flows

Yanmin Mu and Dehua Wang
Calculus of Variations and Partial Differential Equations 59 (4) (2020)
https://doi.org/10.1007/s00526-020-01776-8

On the existence of global strong solutions to 2D compressible Navier–Stokes–Smoluchowski equations with large initial data

Bingkang Huang, Lvqiao Liu and Lan Zhang
Nonlinear Analysis: Real World Applications 49 169 (2019)
https://doi.org/10.1016/j.nonrwa.2019.03.005

Global Existence and Decay Estimates for the Classical Solutions to a Compressible Fluid-Particle Interaction Model

Shijin Ding, Bingyuan Huang and Quanrong Li
Acta Mathematica Scientia 39 (6) 1525 (2019)
https://doi.org/10.1007/s10473-019-0605-8

Low Mach number limit of the compressible Navier-Stokes-Smoluchowski equations in multi-dimensions

Bingyuan Huang, Jinrui Huang and Huanyao Wen
Journal of Mathematical Physics 60 (6) (2019)
https://doi.org/10.1063/1.5089229

Global dynamics of the thermomechanical Cucker–Smale ensemble immersed in incompressible viscous fluids

Young-Pil Choi, Seung-Yeal Ha, Jinwook Jung and Jeongho Kim
Nonlinearity 32 (5) 1597 (2019)
https://doi.org/10.1088/1361-6544/aafaae

Strong Solutions to the Compressible Navier--Stokes--Vlasov--Fokker--Planck Equations: Global Existence Near the Equilibrium and Large Time Behavior

Fucai Li, Yanmin Mu and Dehua Wang
SIAM Journal on Mathematical Analysis 49 (2) 984 (2017)
https://doi.org/10.1137/15M1053049

Global solutions for the one-dimensional compressible Navier-Stokes-Smoluchowski system

Jianlin Zhang, Changming Song and Hong Li
Journal of Mathematical Physics 58 (5) (2017)
https://doi.org/10.1063/1.4982360

Global well-posedness and large time behavior of classical solutions to the Vlasov–Fokker–Planck and magnetohydrodynamics equations

Peng Jiang
Journal of Differential Equations 262 (3) 2961 (2017)
https://doi.org/10.1016/j.jde.2016.11.020

Global existence of weak and strong solutions to Cucker–Smale–Navier–Stokes equations in R2

Young-Pil Choi and Jihoon Lee
Nonlinear Analysis: Real World Applications 27 158 (2016)
https://doi.org/10.1016/j.nonrwa.2015.07.013

Global Weak Solutions to the Magnetohydrodynamic and Vlasov Equations

Robin Ming Chen, Jilong Hu and Dehua Wang
Journal of Mathematical Fluid Mechanics 18 (2) 343 (2016)
https://doi.org/10.1007/s00021-015-0238-1

Large-time behavior for the Vlasov/compressible Navier-Stokes equations

Young-Pil Choi
Journal of Mathematical Physics 57 (7) 071501 (2016)
https://doi.org/10.1063/1.4955026

A Semi-Lagrangian Approach for Dilute Non-Collisional Fluid-Particle Flows

Aude Bernard-Champmartin, Jean-Philippe Braeunig, Christophe Fochesato and Thierry Goudon
Communications in Computational Physics 19 (3) 801 (2016)
https://doi.org/10.4208/cicp.180315.110915a

Modelling and Numerics for Respiratory Aerosols

Laurent Boudin, Céline Grandmont, Alexander Lorz and Ayman Moussa
Communications in Computational Physics 18 (3) 723 (2015)
https://doi.org/10.4208/cicp.180714.200415a

Asymptotic‐preserving schemes for kinetic–fluid modeling of disperse two‐phase flows with variable fluid density

Thierry Goudon, Shi Jin, Jian‐Guo Liu and Bokai Yan
International Journal for Numerical Methods in Fluids 75 (2) 81 (2014)
https://doi.org/10.1002/fld.3885

Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime

Yukun Song, Hongjun Yuan, Yang Chen and Zhidong Guo
Journal of Mathematical Physics 54 (9) 091501 (2013)
https://doi.org/10.1063/1.4820446

Asymptotic-preserving schemes for kinetic-fluid modeling of disperse two-phase flows

Thierry Goudon, Shi Jin, Jian-Guo Liu and Bokai Yan
Journal of Computational Physics 246 145 (2013)
https://doi.org/10.1016/j.jcp.2013.03.038

A level set approach for dilute non-collisional fluid-particle flows

Hailiang Liu, Zhongming Wang and Rodney O. Fox
Journal of Computational Physics 230 (4) 920 (2011)
https://doi.org/10.1016/j.jcp.2010.08.030

On the dynamics of a fluid–particle interaction model: The bubbling regime

J.A. Carrillo, T. Karper and K. Trivisa
Nonlinear Analysis: Theory, Methods & Applications 74 (8) 2778 (2011)
https://doi.org/10.1016/j.na.2010.12.031

Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes

José-Antonio Carrillo, Thierry Goudon and Pauline Lafitte
Journal of Computational Physics 227 (16) 7929 (2008)
https://doi.org/10.1016/j.jcp.2008.05.002