Issue |
ESAIM: ProcS
Volume 71, 2021
FGS’2019 - 19th French-German-Swiss conference on Optimization
|
|
---|---|---|
Page(s) | 114 - 120 | |
DOI | https://doi.org/10.1051/proc/202171114 | |
Published online | 01 September 2021 |
Sensitivity of the “intermediate point” in the mean value theorem: an approach via the Legendre-Fenchel transformation
Institut de Mathématiques, Université Paul Sabatier, 118 route de Narbonne, Toulouse ( France )
We study the sensitivity, essentially the differentiability, of the so-called “intermediate point” c in the classical mean value theorem we provide the expression of its gradient ∇c(d,d), thus giving the asymptotic behavior of c(a, b) when both a and b tend to the same point d. Under appropriate mild conditions on f, this result is “universal” in the sense that it does not depend on the point d or the function f. The key tool to get at this result turns out to be the Legendre-Fenchel transformation for convex functions.
© The authors. Published by EDP Sciences, SMAI 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.