Issue |
ESAIM: ProcS
Volume 45, September 2014
Congrès SMAI 2013
|
|
---|---|---|
Page(s) | 108 - 117 | |
DOI | https://doi.org/10.1051/proc/201445011 | |
Published online | 13 November 2014 |
A new model for shallow viscoelastic free-surface flows forced by gravity on rough inclined bottom
Université Paris-Est, Laboratoire
d’hydraulique Saint-Venant, Ecole Nationale des Ponts et Chaussées – EDF R&D –
CETMEF, 6 quai
Watier, 78401
Chatou Cedex,
France & MATHERIALS, INRIA
Rocquencourt
(sebastien.boyaval@enpc.fr)
A thin-layer model for shallow viscoelastic free-surface gravity flows on slippery topographies around a flat plane has been derived recently in [Bouchut-Boyaval, M3AS (23) 2013]. We show here how the model can be modified for flows on rugous topographies varying around an inclined plane.
The new reduced model extends the scope of one derived in [Bouchut-Boyaval, M3AS (23) 2013]. It is one particular thin-layer model for free-surface gravity flows among many ones that can be formally derived with a generic unifying procedure. Many rheologies and various shallow flow regimes have already been treated within a single unified framework in [Bouchut-Boyaval, HAL-ENPC (00833468) 2013]. The initial full model used here as a starting point is however a little different to one used in [Bouchut-Boyaval, HAL-ENPC (00833468) 2013], although the new thin-layer model is very similar to the one derived therein. Precisely, here, the bulk dissipation (due to e.g. viscosity) is neglected from the beginning, like in [Bouchut-Boyaval, M3AS (23) 2013].
Moreover, unlike in [Bouchut-Boyaval, HAL-ENPC (00833468) 2013], we perform here numerical simulations. The interest of the extension is illustrated in a physically interesting situation where new stationary solutions exist. To that aim, the Finite-Volume method proposed in [Bouchut-Boyaval, M3AS (23) 2013] needs to be modified, with an adequate discretization of the new source terms. Interestingly, we can also numerically exhibit an apparently new kind of “roll-wave” solution.
© EDP Sciences, SMAI 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.