Issue |
ESAIM: ProcS
Volume 64, 2018
SMAI 2017 - 8e Biennale Française des Mathématiques Appliquées et Industrielles
|
|
---|---|---|
Page(s) | 1 - 16 | |
DOI | https://doi.org/10.1051/proc/201864001 | |
Published online | 20 November 2018 |
Nonconservative hyperbolic systems in fluid mechanics
1 e-mail: Denise.Aregba@math.u-bordeaux.fr
2 e-mail: Stephane.Brull@math.u-bordeaux.fr
3 e-mail: xavier.lhebrard@gmail.com
This paper is devoted to the numerical approximation of nonconservative hyperbolic systems. More precisely, we consider the bitemperature Euler system and we propose two methods of discretization. The first one is a kinetic approach based on an underlying kinetic model. The second one deals with a Suliciu approach when magnetic fields are taken into account.
Résumé
Cet article est consacré à l'approximation numérique de systèmes hyperboliques non conservatifs. On considère plus précisément le système d'Euler bitempérature pour lequel on a développé deux méthodes de discrétisation. La premiére approche est basée sur l'approximation d'un modèle cinétique sous-jacent tandis que la seconde correspond à une méthode de type Suliciu, lorsque les champs magnétiques sont pris en compte.
© EDP Sciences, SMAI 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.