Issue |
ESAIM: ProcS
Volume 65, 2019
CEMRACS 2017 - Numerical methods for stochastic models: control, uncertainty quantification, mean-field
|
|
---|---|---|
Page(s) | 27 - 45 | |
DOI | https://doi.org/10.1051/proc/201965027 | |
Published online | 02 April 2019 |
A policy iteration algorithm for nonzero-sum stochastic impulse games
1
Université Paris Dauphine, PSL Research University, LEDA
2
CMAP, Ecole Polytechnique, and Finance for Energy Market Research Centre (FiME)
3
University of Tunis El Manar, ENIT-LAMSIN
4
Department of Statistics, London School of Economics and Political Science
e-mail: d.zabaljauregui@lse.ac.uk
5
IMPA
This work presents a novel policy iteration algorithm to tackle nonzero-sum stochastic impulse games arising naturally in many applications. Despite the obvious impact of solving such problems, there are no suitable numerical methods available, to the best of our knowledge. Our method relies on the recently introduced characterisation of the value functions and Nash equilibrium via a system of quasi-variational inequalities. While our algorithm is heuristic and we do not provide a convergence analysis, numerical tests show that it performs convincingly in a wide range of situations, including the only analytically solvable example available in the literature at the time of writing.
Résumé
Ce travail présente un nouvel algorithme d’itération sur les politiques pour approximer numériquement les fonctions valeurs d’un problème de jeux impulsionnels stochastiques á somme non nulle. Ces problèmes apparaissent naturellement de nombreuses situations économiques de concurrence entre acteurs. A notre connaissance, malgré l’intérêt pratique de solutions numériques á de tels problèmes, il n’existe pas d’algorithmes appropriés. Notre méthode repose sur la caractérisation récemment introduite des fonctions valeur et de l’équilibre de Nash par un système d’inégalités quasivariationnelles. Bien que l’on ne fournisse pas d’analyse de convergence, des tests numériques effectués dans un large éventail de situations illustrent l’effcacité de notre algorithme. Enfin, nous montrons qu’il converge á la solution dans le seul cas connu de solution analytique.
Key words: stochastic impulse game / nonzero-sum game / Nash equilibrium / policy iteration / Howard’s algorithm / quasi-variational inequality
© EDP Sciences, SMAI 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.