Issue |
ESAIM: ProcS
Volume 65, 2019
CEMRACS 2017 - Numerical methods for stochastic models: control, uncertainty quantification, mean-field
|
|
---|---|---|
Page(s) | 476 - 497 | |
DOI | https://doi.org/10.1051/proc/201965476 | |
Published online | 02 April 2019 |
Some non monotone schemes for Hamilton-Jacobi-Bellman equations
EDF R&D & FiME, Laboratoire de Finance des Marchés de l’Energie
e-mail: xavier.warin@edf.fr
We extend the theory of Barles Jakobsen [3] for a class of almost monotone schemes to solve stationary Hamilton Jacobi Bellman equations. We show that the monotonicity of the schemes can be relaxed still leading to the convergence to the viscosity solution of the equation even if the discrete problem can only be solved with some error. We give some examples of such numerical schemes and show that the bounds obtained by the framework developed are not tight. At last we test the schemes.
Résumé
La théorie de Barles Jakobsen [3] pour la résolution des équations d’Hamilton Jacobi Bellman stationnaires est étendue pour une classe de schémas presque linéaires. Nous montrons que la monotonicité du schéma peut être relaxé tout en assurant la convergence vers la solution de viscosité du problème de contrôle bien que le problème discret ne puisse être résolu exactement. Nous donnons des exemples de schémas numériques entrant dans le cadre développé et montrons que les bornes obtenues ne sont pas optimales. Enfin nous testons ces schémas.
© EDP Sciences, SMAI 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.