The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Jean-David Benamou , Guillaume Carlier , Maxime Laborde
ESAIM: ProcS, 54 (2016) 1-17
Published online: 2016-08-02
This article has been cited by the following article(s):
45 articles
Perspective functions with nonlinear scaling
Luis M. Briceño-Arias, Patrick L. Combettes and Francisco J. Silva Communications in Contemporary Mathematics 27 (01) (2025) https://doi.org/10.1142/S0219199723500657
A new flow dynamic approach for Wasserstein gradient flows
Qing Cheng, Qianqian Liu, Wenbin Chen and Jie Shen Journal of Computational Physics 524 113696 (2025) https://doi.org/10.1016/j.jcp.2024.113696
Dynamic modeling, optimization, and deep learning for high-dimensional complex biological data
Jiang Qi and Wan Lin SCIENTIA SINICA Mathematica (2025) https://doi.org/10.1360/SSM-2024-0308
Unbalanced L1 optimal transport for vector valued measures and application to Full Waveform Inversion
Gabriele Todeschi, Ludovic Métivier and Jean-Marie Mirebeau Journal of Computational Physics 523 113657 (2025) https://doi.org/10.1016/j.jcp.2024.113657
Energetic Variational Neural Network Discretizations of Gradient Flows
Ziqing Hu, Chun Liu, Yiwei Wang and Zhiliang Xu SIAM Journal on Scientific Computing 46 (4) A2528 (2024) https://doi.org/10.1137/22M1529427
Quantitative Convergence of a Discretization of Dynamic Optimal Transport Using the Dual Formulation
Sadashige Ishida and Hugo Lavenant Foundations of Computational Mathematics (2024) https://doi.org/10.1007/s10208-024-09686-3
Strong $$L^2 H^2$$ Convergence of the JKO Scheme for the Fokker–Planck Equation
Filippo Santambrogio and Gayrat Toshpulatov Archive for Rational Mechanics and Analysis 248 (6) (2024) https://doi.org/10.1007/s00205-024-02037-0
Enhanced Computation of the Proximity Operator for Perspective Functions
Luis M. Briceño-Arias and Cristóbal Vivar-Vargas Journal of Optimization Theory and Applications 200 (3) 1078 (2024) https://doi.org/10.1007/s10957-023-02361-7
Carathéodory theory and a priori estimates for continuity inclusions in the space of probability measures
Benoît Bonnet-Weill and Hélène Frankowska Nonlinear Analysis 247 113595 (2024) https://doi.org/10.1016/j.na.2024.113595
EURAD state-of-the-art report: development and improvement of numerical methods and tools for modeling coupled processes in the field of nuclear waste disposal
F. Claret, N. I. Prasianakis, A. Baksay, D. Lukin, G. Pepin, E. Ahusborde, B. Amaziane, G. Bátor, D. Becker, A. Bednár, M. Béreš, S. Bérešová, Z. Böthi, V. Brendler, K. Brenner, J. Březina, F. Chave, S. V. Churakov, M. Hokr, D. Horák, D. Jacques, F. Jankovský, C. Kazymyrenko, T. Koudelka, T. Kovács, et al . Frontiers in Nuclear Engineering 3 (2024) https://doi.org/10.3389/fnuen.2024.1437714
Optimal transport with nonlinear mobilities: A deterministic particle approximation result
Simone Di Marino, Lorenzo Portinale and Emanuela Radici Advances in Calculus of Variations 17 (3) 941 (2024) https://doi.org/10.1515/acv-2022-0076
Deep JKO: Time-implicit particle methods for general nonlinear gradient flows
Wonjun Lee, Li Wang and Wuchen Li Journal of Computational Physics 514 113187 (2024) https://doi.org/10.1016/j.jcp.2024.113187
Optimal transport for single-cell and spatial omics
Charlotte Bunne, Geoffrey Schiebinger, Andreas Krause, Aviv Regev and Marco Cuturi Nature Reviews Methods Primers 4 (1) (2024) https://doi.org/10.1038/s43586-024-00334-2
Qing Cheng, Qianqian Liu, Wenbin Chen and Jie Shen (2024) https://doi.org/10.2139/ssrn.4881828
A fast proximal gradient method and convergence analysis for dynamic mean field planning
Jiajia Yu, Rongjie Lai, Wuchen Li and Stanley Osher Mathematics of Computation 93 (346) 603 (2023) https://doi.org/10.1090/mcom/3879
High order spatial discretization for variational time implicit schemes: Wasserstein gradient flows and reaction-diffusion systems
Guosheng Fu, Stanley Osher and Wuchen Li Journal of Computational Physics 491 112375 (2023) https://doi.org/10.1016/j.jcp.2023.112375
Wonjun Lee, Li Wang and Wuchen Li (2023) https://doi.org/10.2139/ssrn.4638739
High order computation of optimal transport, mean field planning, and potential mean field games
Guosheng Fu, Siting Liu, Stanley Osher and Wuchen Li Journal of Computational Physics 491 112346 (2023) https://doi.org/10.1016/j.jcp.2023.112346
A convergent finite volume scheme for dissipation driven models with volume filling constraint
Clément Cancès and Antoine Zurek Numerische Mathematik 151 (1) 279 (2022) https://doi.org/10.1007/s00211-022-01270-7
Some Recent Advances in Energetic Variational Approaches
Yiwei Wang and Chun Liu Entropy 24 (5) 721 (2022) https://doi.org/10.3390/e24050721
A Second-Order Accurate, Operator Splitting Scheme for Reaction-Diffusion Systems in an Energetic Variational Formulation
Chun Liu, Cheng Wang and Yiwei Wang SIAM Journal on Scientific Computing 44 (4) A2276 (2022) https://doi.org/10.1137/21M1444825
Hessian Informed Mirror Descent
Li Wang and Ming Yan Journal of Scientific Computing 92 (3) (2022) https://doi.org/10.1007/s10915-022-01933-5
A dynamic mass transport method for Poisson-Nernst-Planck equations
Hailiang Liu and Wumaier Maimaitiyiming Journal of Computational Physics 111699 (2022) https://doi.org/10.1016/j.jcp.2022.111699
Primal Dual Methods for Wasserstein Gradient Flows
José A. Carrillo, Katy Craig, Li Wang and Chaozhen Wei Foundations of Computational Mathematics 22 (2) 389 (2022) https://doi.org/10.1007/s10208-021-09503-1
A Mixed Finite Element Discretization of Dynamical Optimal Transport
Andrea Natale and Gabriele Todeschi Journal of Scientific Computing 91 (2) (2022) https://doi.org/10.1007/s10915-022-01821-y
Energetic Variational Neural Network Discretizations to Gradient Flows
Ziqing Hu, Chun Liu, Yiwei Wang and Zhiliang Xu SSRN Electronic Journal (2022) https://doi.org/10.2139/ssrn.4159429
The back-and-forth method for Wasserstein gradient flows
Matt Jacobs, Wonjun Lee and Flavien Léger ESAIM: Control, Optimisation and Calculus of Variations 27 28 (2021) https://doi.org/10.1051/cocv/2021029
Computation of optimal transport with finite volumes
Andrea Natale and Gabriele Todeschi ESAIM: Mathematical Modelling and Numerical Analysis 55 (5) 1847 (2021) https://doi.org/10.1051/m2an/2021041
A Diffusion-Driven Characteristic Mapping Method for Particle Management
Xi-Yuan Yin, Linan Chen and Jean-Christophe Nave SIAM Journal on Scientific Computing 43 (5) A3155 (2021) https://doi.org/10.1137/20M1364357
Geometric Partial Differential Equations - Part II
Jose A. Carrillo, Daniel Matthes and Marie-Therese Wolfram Handbook of Numerical Analysis, Geometric Partial Differential Equations - Part II 22 271 (2021) https://doi.org/10.1016/bs.hna.2020.10.002
A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance
Chun Liu, Cheng Wang and Yiwei Wang Journal of Computational Physics 436 110253 (2021) https://doi.org/10.1016/j.jcp.2021.110253
Optimal transportation, modelling and numerical simulation
Jean-David Benamou Acta Numerica 30 249 (2021) https://doi.org/10.1017/S0962492921000040
A variational finite volume scheme for Wasserstein gradient flows
Clément Cancès, Thomas O. Gallouët and Gabriele Todeschi Numerische Mathematik 146 (3) 437 (2020) https://doi.org/10.1007/s00211-020-01153-9
Gradient Flow Algorithms for Density Propagation in Stochastic Systems
Kenneth F. Caluya and Abhishek Halder IEEE Transactions on Automatic Control 65 (10) 3991 (2020) https://doi.org/10.1109/TAC.2019.2951348
Positive and free energy satisfying schemes for diffusion with interaction potentials
Hailiang Liu and Wumaier Maimaitiyiming Journal of Computational Physics 419 109483 (2020) https://doi.org/10.1016/j.jcp.2020.109483
Fisher information regularization schemes for Wasserstein gradient flows
Wuchen Li, Jianfeng Lu and Li Wang Journal of Computational Physics 416 109449 (2020) https://doi.org/10.1016/j.jcp.2020.109449
On Cross-Diffusion Systems for Two Populations Subject to a Common Congestion Effect
Maxime Laborde Applied Mathematics & Optimization 81 (3) 989 (2020) https://doi.org/10.1007/s00245-018-9527-4
A tumor growth model of Hele-Shaw type as a gradient flow
Simone Di Marino and Lénaïc Chizat ESAIM: Control, Optimisation and Calculus of Variations 26 103 (2020) https://doi.org/10.1051/cocv/2020019
A Two-Phase Two-Fluxes Degenerate Cahn–Hilliard Model as Constrained Wasserstein Gradient Flow
Clément Cancès, Daniel Matthes and Flore Nabet Archive for Rational Mechanics and Analysis (2019) https://doi.org/10.1007/s00205-019-01369-6
José A. Carrillo, Katy Craig and Yao Yao 65 (2019) https://doi.org/10.1007/978-3-030-20297-2_3
An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems
Thomas Gallouët, Maxime Laborde and Léonard Monsaingeon ESAIM: Control, Optimisation and Calculus of Variations 25 8 (2019) https://doi.org/10.1051/cocv/2018001
PDE Models for Multi-Agent Phenomena
Elisabetta Carlini and Francisco J. Silva Springer INdAM Series, PDE Models for Multi-Agent Phenomena 28 195 (2018) https://doi.org/10.1007/978-3-030-01947-1_9
Dynamical optimal transport on discrete surfaces
Hugo Lavenant, Sebastian Claici, Edward Chien and Justin Solomon ACM Transactions on Graphics 37 (6) 1 (2018) https://doi.org/10.1145/3272127.3275064
Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure
Clément Cancès and Cindy Guichard Foundations of Computational Mathematics 17 (6) 1525 (2017) https://doi.org/10.1007/s10208-016-9328-6
{Euclidean, metric, and Wasserstein} gradient flows: an overview
Filippo Santambrogio Bulletin of Mathematical Sciences 7 (1) 87 (2017) https://doi.org/10.1007/s13373-017-0101-1