Issue |
ESAIM: Proc.
Volume 1, 1996
Vortex flows an related numerical methods II
|
|
---|---|---|
Page(s) | 565 - 575 | |
DOI | https://doi.org/10.1051/proc:1996017 | |
Published online | 15 August 2002 |
A numerical and analytical study of vortex rings with swirl
1
Mathematics Dept. University of Illinois Chicago, IL 60607, USA
2
Mathematics Dept. Carson-Newman College Jefferson City, TN 37760, USA
3
Mathematics Dept. Duke University Durham, NC 27708, USA
We study the growth of disturbances to vortex rings with swirl, which are exact solutions of the Euler equations of inviscid flow, using two contrasting methods. The motion of the perturbed vortex rings can be regarded as a prototype for the inviscid dynamics of vortex structures in 3D. Exact rings with swirl are computed as steady, axisymmetric flows using a variational method. Asymptotic analysis in the short wave limit, similar to geometric optics, leads to ordinary differential equations for perturbations along particle paths. These ODE's can be solved for the rings of interest, yielding predicted maximum growth rates for small disturbances. These rates are compared with the direct simulation of sample disturbances using a 3D vortex method to calculate the evolution according to the Euler equations.
© EDP Sciences, ESAIM, 1996
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.