Issue |
ESAIM: Proc.
Volume 1, 1996
Vortex flows an related numerical methods II
|
|
---|---|---|
Page(s) | 577 - 585 | |
DOI | https://doi.org/10.1051/proc:1996031 | |
Published online | 15 August 2002 |
A spectral method for unbounded flow in a cylindrical coordinate system
State Key Laboratory for Turbulence Research Dept. of Mechanics, Peking University, Beijing, 100871, P.R. of China
Fourier expansions in the radial direction for unbounded flows expressed in a cylindrical coordinate system are proposed. By appropriate coordinate mapping and periodic extension in the r direction, periodic boundary conditions required by Fourier expansions and infinite differentiability demanded by spectral convergence are established. Appropriate zero factors for the general Fourier expansions are given at the axis and at infinity in order to remove the numerical singularity at r=0 and to satisfy all the boundary conditions. The effectiveness of these expansions are demonstrated by the simulation of steady axisymmetrical vortex rings in ideal fluid and the numerical simulation of the head-on collision of two coaxial, equal and opposite vortex rings.
© EDP Sciences, ESAIM, 1996
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.