Issue |
ESAIM: Proc.
Volume 32, October 2011
CEMRACS'10 research achievements: Numerical modeling of fusion
|
|
---|---|---|
Page(s) | 149 - 162 | |
DOI | https://doi.org/10.1051/proc/2011018 | |
Published online | 03 November 2011 |
A second order anti-diffusive Lagrange-remap scheme for two-component flows
1
Université de Bordeaux, CEA, CNRS, CELIA, 351 Cours de la Libération, 33405
Talence, France
e-mail: billaud@celia.u-bordeaux1.fr
2
IRMAR - Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
e-mail: benjamin.boutin@univ-rennes1.fr
3
Université Paris-Sud 11, Département de Mathématiques, CNRS UMR 8628, Bâtiment
425, 91405 Orsay, France
e-mail: filipa.caetano@math.u-psud.fr &
frederic.lagoutiere@math.u-psud.fr
4
IMATH, Université du Sud Toulon-Var, Bâtiment U, 83957 La Garde, France
e-mail: faccanon@univ-tln.fr
5
DEN/DANS/DM2S/SFME/LETR, CEA Saclay, 91191 Gif-sur-Yvette, France
e-mail: samuel.kokh@cea.fr
6
Équipe-Projet SIMPAF, Centre de Recherche INRIA Futurs, Parc Scientifique de la
Haute Borne, 40 Avenue Halley B.P. 70478, F-59658 Villeneuve d’Ascq, France
7
Laboratoire MAP (UMR CNRS 8145), Université Paris Descartes, 45 rue des Saints
Pères, 75270 Paris, France
e-mail: laurent.navoret@parisdescartes.fr
We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that preserves sharp interfaces. Numerical results reported at the end of the paper are very encouraging, showing the interest of the second order accuracy for genuinely non-linear waves.
Résumé
Nous construisons un algorithme d’ordre deux et non dissipatif pour la résolution approchée des équations d’Euler de la dynamique des gaz compressibles à deux constituants en dimension un. Le modèle que nous considérons est celui à cinq équations proposé et analysé dans [1]. L’algorithme est basé sur [8] qui proposait une résolution approchée à l’ordre un et non dissipative au moyen d’un splitting de type Lagrange-projection. Dans le présent article, nous décrivons, dans le même formalisme, un algorithme d’ordre deux en temps et en espace, qui préserve des interfaces « parfaites » entre les constituants. Les résultats numériques rapportés à la fin de l’article sont très encourageants ; ils montrent clairement les avantages d’un schéma d’ordre deux pour les ondes vraiment non linéaires.
© EDP Sciences, SAIM 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.