Issue |
ESAIM: Proc.
Volume 36, April 2012
European Conference on Iteration Theory 2010
|
|
---|---|---|
Page(s) | 180 - 188 | |
DOI | https://doi.org/10.1051/proc/201236014 | |
Published online | 28 August 2012 |
Doubling bifurcation of a closed invariant curve in 3D maps
1
Dept. of Economics, Society and Politics, University of
Urbino, Italy
e-mail: laura.gardini@uniurb.it
2
Institute of Mathematics, NASU ; Kyiv Economics Institute at Kyiv School of
Economics
e-mail: sushko@imath.kiev.ua
The object of the present paper is to give a qualitative description of the bifurcation mechanisms associated with a closed invariant curve in three-dimensional maps, leading to its doubling, not related to a standard doubling of tori. We propose an explanation on how a closed invariant attracting curve, born via Neimark-Sacker bifurcation, can be transformed into a repelling one giving birth to a new attracting closed invariant curve which has doubled loops.
Résumé
L’objet de ce papier est de donner une description qualitative des mécanismes de bifurcation associés avec une courbe fermée invariante pour des applications en dimension trois, conduisant à son doublement, et différent du doublement standard de tores. Nous proposons une explication du fait qu’une courbe fermée invariante attractive, née d’une bifurcation de Neimark-Sacker, peut se transformer en une courve répulsive donnant naissance à une nouvelle courbe fermée invariante attractive avec boucles doublées.
Mathematics Subject Classification: 37G15 / 37G35 / 37C70
Key words: 3D maps / Neimark-Sacker bifurcation / closed invariant curve / period-doubling bifurcation
Mots clés : Transformation de dimension 3 / Bifurcation de Neimark-Sacker / Courbe invariante fermée / Bifurcation doublement de période
© EDP Sciences, SMAI 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.