Issue |
ESAIM: Proc.
Volume 48, January 2015
CEMRACS 2013 - Modelling and simulation of complex systems: stochastic and deterministic approaches
|
|
---|---|---|
Page(s) | 80 - 97 | |
DOI | https://doi.org/10.1051/proc/201448003 | |
Published online | 09 March 2015 |
Quantitative estimates on the periodic approximation of the corrector in stochastic homogenization
1 Université Libre de Bruxelles (ULB),
Brussels, Belgium & Team MEPHYSTO, Inria Lille - Nord Europe,
Villeneuve d’Ascq,
France,
agloria@ulb.ac.be
2 Max Planck Institute for Mathematics
in the Sciences, Inselstr. 22, 04103
Leipzig,
Germany,
felix.otto@mis.mpg.de
We establish quantitative results on the periodic approximation of the corrector equation for the stochastic homogenization of linear elliptic equations in divergence form, when the diffusion coefficients satisfy a spectral gap estimate in probability, and for d> 2. This work is based on [5], which is a complete continuum version of [6, 7] (with in addition optimal results for d = 2). The main difference with respect to the first part of [5] is that we avoid here the use of Green’s functions and more directly rely on the De Giorgi-Nash-Moser theory.
Résumé
Nous démontrons des résultats quantitatifs sur l’approximation par périodisation du correcteur en homogénéisation stochastique des équations aux dérivées partielles elliptiques linéaires sous forme divergence, lorsque les coefficients de diffusion satisfont une hypothèse de trou spectral en probabilité et en dimension d> 2. Ce travail s’inspire de [5], qui est une version complète dans le cas continu de [6, 7] (qui traite également le cas d = 2 de manière optimale). La différence majeure avec [5] est qu’on utilise directement la théorie de De Giorgi-Nash-Moser à la place des fonctions de Green.
© EDP Sciences, SMAI 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.