Issue |
ESAIM: Procs
Volume 60, 2017
Journées MAS 2016 de la SMAI – Phénomènes complexes et hétérogènes
|
|
---|---|---|
Page(s) | 27 - 69 | |
DOI | https://doi.org/10.1051/proc/201760027 | |
Published online | 14 December 2017 |
Metamodel construction for sensitivity analysis
1 UR 1404 MaIAGE, INRA Jouy-en-Josas, France ; e-mail: sylvie.huet@inra.fr
2 Laboratoire LaMME, UMR CNRS 8071- USC INRA, Université d’Evry Val d’Essonne, France ; e-mail: marie-luce.taupin@univ-evry.fr
We propose to estimate a metamodel and the sensitivity indices of a complex model m in the Gaussian regression framework. Our approach combines methods for sensitivity analysis of complex models and statistical tools for sparse non-parametric estimation in multivariate Gaussian regression model. It rests on the construction of a metamodel for aproximating the Hoeffding-Sobol decomposition of m. This metamodel belongs to a reproducing kernel Hilbert space constructed as a direct sum of Hilbert spaces leading to a functional ANOVA decomposition. The estimation of the metamodel is carried out via a penalized least-squares minimization allowing to select the subsets of variables that contribute to predict the output. It allows to estimate the sensitivity indices of m. We establish an oracle-type inequality for the risk of the estimator, describe the procedure for estimating the metamodel and the sensitivity indices, and assess the performances of the procedure via a simulation study.
Résumé
Nous considérons l’estimation d’un méta-modèle d’un modèle complexe m à partir des observations d’un n-échantillon dans un modèle de régression gaussien. Nous en déduisons une estimation des indices de sensibilité de m. Notre approche combine les méthodes d’analyse de sensibilité de modèles complexes et les outils statistiques de l’estimation non-paramétrique en régression multivariée. Elle repose sur la construction d’un méta-modèle qui approche la décomposition de Hoeffding-Sobol de m. Ce méta-modèle appartient à un espace de Hilbert à noyau reproduisant qui est lui-même la somme directe d’espaces de Hilbert, permettant ainsi une décomposition de type ANOVA. On en déduit des estimateurs des indices de sensibilité de m. Nous établissons une inégalité de type oracle pour le risque de l’estimateur, nous décrivons la procédure pour estimer le méta-modèle et les indices de sensibilité, et évaluons les performances de notre méthode à l’aide d’une étude de simulations.
© EDP Sciences, SMAI 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.