Issue |
ESAIM: ProcS
Volume 69, 2020
Second Workshop on Compressible Multiphase Flows: Derivation, closure laws, thermodynamics
|
|
---|---|---|
Page(s) | 47 - 55 | |
DOI | https://doi.org/10.1051/proc/202069047 | |
Published online | 12 February 2021 |
‘Uncertainty’ principle in two fluid–mechanics
Aix–Marseille Univ, CNRS, IUSTI, UMR 7343, 5 rue E. Fermi, Marseille, France
e-mail: sergey.gavrilyuk@univ-amu.fr
Hamilton’s principle (or principle of stationary action) is one of the basic modelling tools in finite-degree-of-freedom mechanics. It states that the reversible motion of mechanical systems is completely determined by the corresponding Lagrangian which is the difference between kinetic and potential energy of our system. The governing equations are the Euler-Lagrange equations for Hamil- ton’s action.
Hamilton’s principle can be naturally extended to both one-velocity and multi-velocity continuum mechanics (infinite-degree-of-freedom systems). In particular, the motion of multi–velocity continuum is described by a coupled system of ‘Newton’s laws’ (Euler-Lagrange equations) for each component. The introduction of dissipative terms compatible with the second law of thermodynamics and a natural restriction on the behaviour of potential energy (convexity) allows us to derive physically reasonable and mathematically well posed governing equations.
I will consider a simplest example of two-velocity fluids where one of the phases is incompressible (for example, flow of dusty air, or flow of compressible bubbles in an incompressible fluid). A very surprising fact is that one can obtain different governing equations from the same Lagrangian. Different types of the governing equations are due to the choice of independent variables and the corresponding virtual motions. Even if the total momentum and total energy equations are the same, the equations for individual components differ from each other by the presence or absence of gyroscopic forces (also called ‘lift’ forces). These forces have no influence on the hyperbolicity of the governing equations, but can drastically change the distribution of density and velocity of components.
To the best of my knowledge, such an uncertainty in obtaining the governing equations of multi- phase flows has never been the subject of discussion in a ‘multi-fluid’ community.
© EDP Sciences, SMAI 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.