Issue |
ESAIM: ProcS
Volume 71, 2021
FGS’2019 - 19th French-German-Swiss conference on Optimization
|
|
---|---|---|
Page(s) | 131 - 144 | |
DOI | https://doi.org/10.1051/proc/202171131 | |
Published online | 01 September 2021 |
Multilevel minimization for deep residual networks
Institute of Computational Science, Università della Svizzera, italiana
We present a new multilevel minimization framework for the training of deep residual networks (ResNets), which has the potential to significantly reduce training time and effort. Our framework is based on the dynamical system’s viewpoint, which formulates a ResNet as the discretization of an initial value problem. The training process is then formulated as a time-dependent optimal control problem, which we discretize using different time-discretization parameters, eventually generating multilevel-hierarchy of auxiliary networks with different resolutions. The training of the original ResNet is then enhanced by training the auxiliary networks with reduced resolutions. By design, our framework is conveniently independent of the choice of the training strategy chosen on each level of the multilevel hierarchy. By means of numerical examples, we analyze the convergence behavior of the proposed method and demonstrate its robustness. For our examples we employ a multilevel gradient-based methods. Comparisons with standard single level methods show a speedup of more than factor three while achieving the same validation accuracy.
© The authors. Published by EDP Sciences, SMAI 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.