Issue |
ESAIM: ProcS
Volume 73, 2023
CEMRACS 2021 - Data Assimilation and Reduced Modeling for High Dimensional Problems
|
|
---|---|---|
Page(s) | 28 - 47 | |
DOI | https://doi.org/10.1051/proc/202373028 | |
Published online | 30 August 2023 |
Wasserstein model reduction approach for parametrized flow problems in porous media
1
Politecnico di Torino, Université de Bordeaux
2
Max-Planck-Institute for Plasma Physics & Technische Universität München
3
IFPEN
4
Ecole Nationale des Ponts et Chaussées INRIA
5
INRIA
6
Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
The aim of this work is to build a reduced order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in [Ehrlacher et al., Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces, ESAIM: Mathematical Modelling and Numerical Analysis (2020)], based on the use of Wasserstein barycenters [Agueh & Carlier, Barycenters in the Wasserstein Space, SIAM Journal on Mathematical Analysis (2011)], to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future.
Résumé
Le but de ce travail est de construire un modèle réduit pour des problèmes d’écoulements en milieux poreux paramétrés. La difficulté principale de ce type de problèmes est que la distance de Kolmogorov de l’ensemble de solutions décroît lentement, rendant ainsi les méthodes de réduction de modèles linéaires usuelles inefficaces. Ici, nous proposons une adaptation de la méthodologie proposée dans [Ehrlacher et al., Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces, ESAIM: Mathematical Modelling and Numerical Analysis (2020)], utilisant des barycentres de Wasserstein [Agueh & Carlier, Barycenters in the Wasserstein Space, SIAM Journal on Mathematical Analysis (2011)], au cas de problèmes non conservatifs. Des tests numériques en dimension 1 permettent d’illustrer les avantages et les limitations de cette approche et d’identifier des pistes de recherche que nous souhaiterons aborder dans un futur travail.
© EDP Sciences, SMAI 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.