The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Marius Paicu , Geneviève Raugel
ESAIM: Proc., 21 (2007) 65-87
Published online: 2007-12-04
This article has been cited by the following article(s):
17 articles
Global well-posedness of 2D Hyperbolic perturbation of the Navier–Stokes system in a thin strip
Nacer Aarach Nonlinear Analysis: Real World Applications 76 104014 (2024) https://doi.org/10.1016/j.nonrwa.2023.104014
Global existence for hyperbolic Navier–Stokes equations in Gevrey class
Bouthaina Abdelhedi and Rim Farhat Georgian Mathematical Journal (2024) https://doi.org/10.1515/gmj-2024-2056
On a relaxation approximation of the 2-D incompressible magnetohydrodynamic equations
Tuowei Chen and Yun Pu Applicable Analysis 103 (15) 2777 (2024) https://doi.org/10.1080/00036811.2024.2317398
Hyperbolic Navier-Stokes equations in three space dimensions
Bouthaina Abdelhedi Filomat 37 (7) 2209 (2023) https://doi.org/10.2298/FIL2307209A
Gevrey-Class-3 Regularity of the Linearised Hyperbolic Prandtl System on a Strip
Francesco De Anna, Joshua Kortum and Stefano Scrobogna Journal of Mathematical Fluid Mechanics 25 (4) (2023) https://doi.org/10.1007/s00021-023-00821-8
On the Role of the Displacement Current and the Cattaneo’s Law on Boundary Layers of Plasma
Nacer Aarach, Francesco De Anna, Marius Paicu and Ning Zhu Journal of Nonlinear Science 33 (6) (2023) https://doi.org/10.1007/s00332-023-09966-2
Global hydrostatic approximation of the hyperbolic Navier-Stokes system with small Gevrey class 2 data
Marius Paicu and Ping Zhang Science China Mathematics 65 (6) 1109 (2022) https://doi.org/10.1007/s11425-021-1956-8
Hyperbolic Quasilinear Navier–Stokes Equations in $${\mathbb {R}}^2$$
Olivier Coulaud, Imène Hachicha and Geneviève Raugel Journal of Dynamics and Differential Equations 34 (4) 2749 (2022) https://doi.org/10.1007/s10884-021-09978-0
In Memoriam: Geneviève Raugel
Valentina Busuioc, Thierry Gallay and Romain Joly Journal of Dynamics and Differential Equations 34 (4) 2585 (2022) https://doi.org/10.1007/s10884-022-10190-x
Singular limit for the magnetohydrodynamics of the damped wave type in the critical Fourier–Sobolev space
Tatsuya Matsui, Ryosuke Nakasato and Takayoshi Ogawa Journal of Differential Equations 271 414 (2021) https://doi.org/10.1016/j.jde.2020.08.023
Relaxed Euler systems and convergence to Navier-Stokes equations
Yue-Jun Peng Annales de l'Institut Henri Poincaré C, Analyse non linéaire (2020) https://doi.org/10.1016/j.anihpc.2020.07.007
Global existence of solutions for hyperbolic Navier–Stokes equations in three space dimensions
Bouthaina Abdelhedi Asymptotic Analysis 112 (3-4) 213 (2019) https://doi.org/10.3233/ASY-181503
Hyperbolic relaxation of the 2D Navier–Stokes equations in a bounded domain
Alexei Ilyin, Yuri Rykov and Sergey Zelik Physica D: Nonlinear Phenomena 376-377 171 (2018) https://doi.org/10.1016/j.physd.2017.09.008
Uniform Asymptotic and Convergence Estimates for the Jin--Xin Model Under the Diffusion Scaling
Roberta Bianchini SIAM Journal on Mathematical Analysis 50 (2) 1877 (2018) https://doi.org/10.1137/17M1152395
The Navier-Stokes Problem in the 21st Century
The Navier-Stokes Problem in the 21st Century 677 (2016) https://doi.org/10.1201/b19556-23
Global existence for a damped wave equation and convergence towards a solution of the Navier–Stokes problem
Imène Hachicha Nonlinear Analysis: Theory, Methods & Applications 96 68 (2014) https://doi.org/10.1016/j.na.2013.10.020
Decomposition of three-dimensional linearized equations for Maxwell and Oldroyd viscoelastic fluids and their generalizations
A. D. Polyanin and A. V. Vyazmin Theoretical Foundations of Chemical Engineering 47 (4) 321 (2013) https://doi.org/10.1134/S004057951304026X