Issue |
ESAIM: Proc.
Volume 48, January 2015
CEMRACS 2013 - Modelling and simulation of complex systems: stochastic and deterministic approaches
|
|
---|---|---|
Page(s) | 169 - 189 | |
DOI | https://doi.org/10.1051/proc/201448007 | |
Published online | 09 March 2015 |
Numerical methods in the context of compartmental models in epidemiology
Aix-Marseille Université, CNRS,
Centrale Marseille, I2M, UMR 7373
13453
Marseille,
France ;
e-mail: kratz@mathematik.hu-berlin.de;
etienne.pardoux@univ-amu.fr; skbrice@yahoo.fr
We consider compartmental models in epidemiology. For the study of the divergence of the stochastic model from its corresponding deterministic limit (i.e., the solution of an ODE) for long time horizon, a large deviations principle suggests a thorough numerical analysis of the two models. The aim of this paper is to present three such motivated numerical works. We first compute the solution of the ODE model by means of a non-standard finite difference scheme. Next we solve a constraint optimization problem via discrete-time dynamic programming: this enables us to compute the leading term in the large deviations principle of the time of extinction of a given disease. Finally, we apply the τ-leaping algorithm to the stochastic model in order to simulate its solution efficiently. We illustrate these numerical methods by applying them to two examples.
Résumé
On considère des modèles comportementaux en épidémiologie. Afin d’étudier l’écart en temps long entre le modèle stochastique et sa limite loi des grands nombres (qui est la solution d’une EDO), on se base sur un principe des grandes dáviations, qui nous conduit à mener une étude numérique des deux modèles, sur trois aspects différents. Tout d’abord, nous calculons une solution approchée de l’EDO à l’aide d’une méthode numérique dite “non–standard”. Ensuite une résolvons numériquement un problème de contrôle sous contrainte, afin de calculer le terme principal des grandes déviations du temps de sortie d’une situation endémique. Enfin nous mettons en oeuvre l’algorithme du “τ–leaping” pour simuler efficacement la solution du système stochastique. Nous illustrons ces simulations numériques en les appliquant à deux exemples.
© EDP Sciences, SMAI 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.