Issue |
ESAIM: ProcS
Volume 63, 2018
CEMRACS 2016 - Numerical challenges in parallel scientific computing
|
|
---|---|---|
Page(s) | 109 - 134 | |
DOI | https://doi.org/10.1051/proc/201863109 | |
Published online | 19 October 2018 |
Parallel Geothermal Numerical Model with Fractures and Multi-Branch Wells
1
Université Côte d’Azur, Inria, CNRS, LJAD, UMR 7351 CNRS, team Coffee, Parc Valrose 06108 Nice Cedex 02, France,
laurence.beaude@unice.fr
2
CEA Saclay, DEN/DANS/DM2S/STMF/LMEC
thibaud.beltzung@cea.fr
3
Université Côte d’Azur, Inria, CNRS, LJAD, UMR 7351 CNRS, team Coffee, Parc Valrose 06108 Nice Cedex 02, Romania
thibaud.beltzung@cea.fr
4
BRGM, 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2, France,
s.lopez@brgm.fr
5
Université Côte d’Azur, Inria, CNRS, LJAD, UMR 7351 CNRS, team Coffee, Parc Valrose 06108 Nice Cedex 02, Romania
roland.masson@unice.fr
6
BRGM, 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2, France,
f.smai@brgm.fr
7
Storengy
jean-frederic.thebault@storengy.com
8
Université Côte d’Azur, Inria, CNRS, LJAD, UMR 7351 CNRS, team Coffee, Parc Valrose 06108 Nice Cedex 02, BRGM,
feng.xing@outlook.com
To answer the need for an efficient and robust geothermal simulation tool going beyond existing code capabilities in terms of geological and physical complexity, we have started to develop a parallel geothermal simulator based on unstructured meshes. The model takes into account complex geology including fault and fracture networks acting as major heat and mass transfer corridors and complex physics coupling the mass and energy conservations to the thermodynamic equilibrium between the gas and liquid phases. The objective of this Cemracs project was to focus on well modeling which is a key missing ingredient in our current simulator in order to perform realistic geothermal studies both in terms of monitoring and in terms of history matching. The well is discretized by a set of edges of the mesh in order to represent efficiently slanted or multi-branch wells on unstructured meshes. The connection with the 3D matrix and the 2D fracture network at each node of the well is accounted for using Peaceman’s approach. The non-isothermal flow model inside the well is based on the usual single unknown approach assuming the hydrostatic and thermodynamical equilibrium inside the well. The parallelization of the well model is implemented in such a way that the assembly of the Jacobian at each Newton step and the computation of the pressure drops inside the well can be done locally on each process without MPI communications.
Résumé
Afin de dépasser les limites des codes actuels de simulation des systemes géothermiques en matière de complexité géologique et physique, nous avons initié le développement d’un nouveau simulateur d’écoulements géothermiques parallèle à base de maillages non structurés. Le modèle prenden compte une géologie complexe incorporant notamment les réseaux de failles qui jouent un r ôle majeur dans le transport de masse et d’énergie, ainsi qu’une physique complexe couplant les conservations de la masse et de l’énergie à l’équilibre thermodynamique entre les phases liquide et gazeuse. L’objectif de ce projet Cemracs était d’y incorporer un modèle de puits qui constitue un ingrédient essentiel pour réaliser des études géothermiques réalistes à la fois pour la surveillance du réservoir et la reproduction des historiques de production. Le puits est discrétisé par un sous ensemble d’arêtes du maillage de façon a pouvoir représenter efficacement des puits déviés ou multi-branches. La connection avec la matrice 3D et le réseau de failles 2D repose sur des indices de productivité de type Peaceman. Le transport de masse et d’énergie dans le puits se base sur un modèle classique en simulation de réservoir a une inconnue par puits qui suppose l’équilibre hydrostatique et thermodynamique dans le puits. La parallélisation du modèle de puits est réalisée de façon à pouvoir assembler la Jacobienne et à calculer les pertes de charge dans le puits localement sur chaque processus sans nécessiter de communications MPI.
© EDP Sciences, SMAI 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.