Issue |
ESAIM: ProcS
Volume 75, 2023
Journées SMAI 2021
|
|
---|---|---|
Page(s) | 2 - 23 | |
DOI | https://doi.org/10.1051/proc/202375002 | |
Published online | 19 December 2023 |
Recent progress on limit theorems for large stochastic particle systems*
1
Université Paris Cité and Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions & Laboratoire de Probabilités, Statistique et Modélisation, 8 place Aurélie Nemours, F-75013 Paris, France
2
LJLL, Sorbonne Université, Paris, France
3
IHES, Bures-sur-Yvette, France
4
LJLL and LCT, Sorbonne Université, Paris, France
5
CERMICS, Ecole des Ponts, Marne-la-Vallée, France
6
CNRS, CMAP Ecole Polytechnique, France
This article presents a selection of recent results in the mathematical study of physical systems described by a large number of particles, with various types of interactions (mean-field, moderate, nearest-neighbor). Limit theorems are obtained concerning either the large-scale or the long-time behavior of these systems. These results rely on the use of a large range of mathematical tools, arising from both probability theory and the analysis of partial differential equations, and thereby illustrate fruitful interactions between these two disciplines.
Résumé
Cet article présente une sélection de résultats récents dans l’étude mathématique de systèmes physiques décrits par un grand nombre de particules, soumis à des interactions de diverses natures (champ moyen, interaction modérée, plus proches voisins). On y obtient des théorèmes limites concernant le comportement à grande échelle ou en temps long de ces systèmes. Ces résultats reposent sur l’emploi d’une large gamme d’outils mathématiques, provenant de la théorie des probabilités et de l’analyse des équations aux dérivées partielles, et illustrent ainsi les interactions fécondes entre ces deux disciplines.
© EDP Sciences, SMAI 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.