Issue |
ESAIM: Proc.
Volume 46, November 2014
ECIT 2012, 19th European Conference on Iteration Theory
|
|
---|---|---|
Page(s) | 196 - 212 | |
DOI | https://doi.org/10.1051/proc/201446016 | |
Published online | 05 December 2014 |
Convergence of iterates of pre-mean-type mappings
Faculty of Mathematics, Computer
Science and Econometrics, University of Zielona Góra, Szafrana 4a,
PL-65-516
Zielona Góra,
Poland,
e-mail: J.Matkowski@wmie.uz.zgora.pl
Pre-mean in an interval I, being defined as a function M:I2 → I such that M(x,x) = x for x ∈ I,is an essential generalization of the mean. If M and N are pre-means, a map (M,N):I2 → I2 is called pre-mean-type mapping. The problem of convergence of iterates of pre-mean type mappings of the form with s,t ∈ (0,1);p,q ∈ R, p ≠ q, where is considered. It is proved, in particular, that for p = 2r, q = r and s ≤ t< 2s, the sequence of iterates at the point (x,y) converges to . For some s and t the iterates behave in ”chaotic” way. An application in solving a functional equation is presented.
Résumé
Pré-moyenne en intervalle I, etant détérminé comme une fonction M:I2 → I, telle che M(x,x) = x,x ∈ I, est une generalisation fondamentale de la moyenne. Si M et N sont les pré-moyennes, l’application (M,N):I2 → I2 s’appelle l’application qui pré-moyenne. Le problème de la convergence de l’itération des applications qui pré-moyennent qui ont la forme avec s,t ∈ (0,1);p,q ∈R, p ≠ q; est ici considéré. On prouve, en particulier, que pour p = 2r, q = r et s ≤ t< 2s, une suite des itérations en un point (x,y) est convergente á. Pour certains s,t les itérations se comportent d’une manière chaotique. Le résultat reçu est appliquaé´ résoudre une équation fonctionnelle.
Mathematics Subject Classification: 26E60, 26A18 / 39B12
Key words: mean / pre-mean / pre-mean-type mapping / invariant mean / invariant pre-mean / iterate / convergence / functional equation
Mots clés : moyenne / pré-moyenne / pré-moyenne invariante / itération / convergence / équation fonctionnelle
© EDP Sciences, SMAI 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.