Issue |
ESAIM: Proc.
Volume 32, October 2011
CEMRACS'10 research achievements: Numerical modeling of fusion
|
|
---|---|---|
Page(s) | 211 - 230 | |
DOI | https://doi.org/10.1051/proc/2011022 | |
Published online | 03 November 2011 |
Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson
1
INRIA, IRMA, Université de Strasbourg,
7, rue Ren Descartes,
67084
Strasbourg, France
2
IRMA, Université de Strasbourg, 7, rue Ren Descartes, 67084
Strasbourg, France
3
Departament de Matemàtica Aplicada, Universitat de
València, calle Dr. Moliner
50, 46100
Burjassot, Spain
We present a discontinuous Galerkin scheme for the numerical approximation of the one-dimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme when applied to Vlasov-Poisson test cases.
Résumé
Une méthode de Galerkin discontinu est proposée pour l’approximation numérique de l’équation de Vlasov-Poisson 1D. L’approche est basée sur une méthode Galerkin-caractéristiques où la fonction de distribution est projetée sur un espace de fonctions discontinues. En particulier, la méthode est comparée à une méthode semi-Lagrangienne pour l’approximation de l’équation de Vlasov-Poisson.
© EDP Sciences, SAIM 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.